Stock material or miscellaneous articles – Self-sustaining carbon mass or layer with impregnant or...
Reexamination Certificate
2002-11-27
2004-08-24
Jones, Deborah (Department: 1775)
Stock material or miscellaneous articles
Self-sustaining carbon mass or layer with impregnant or...
C428S469000, C428S472000, C428S409000, C428S212000, C416S24100B
Reexamination Certificate
active
06780509
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to a protective coating for metallic components which are in direct contact with the condensate of a liquid medium. Protective coatings of this type are provided in particular for components of power plants which are in direct contact with the water used as working medium in particular in steam power plants. The working medium, which is in the form of steam, partially condenses on the components, and/or the working medium which is condensed elsewhere strikes the surfaces of these components in the form of drops with a velocity which is by no means insignificant. There, not only is an undesirable film of condensate formed, but also drop impact makes a contribution to destruction of the component.
Drop condensation on the transfer surfaces of condensers is a phenomenon which has been known for more than 50 years. Due to the extraordinarily high transfer which can be achieved thereby, drop condensation is highly desirable in technical installations used for heat transfer. Nevertheless, it has heretofore scarcely been implemented on an industrial scale. Only applications in which mercury is used to achieve drop condensation are known. In the field of steam condensation, particular efforts have been made to form drop condensation, due to the great importance of the water used therein in energy and mass conversion processes. However, heretofore it has only been possible to maintain drop concentration for a few months with the aid of additives. Heretofore, there has been no disclosure of drop condensation with long-term stability in power plant engineering. However, it is known that drop condensation can be achieved if the surfaces which are acted on by steam are not wetted by the condensate. To achieve this, the surfaces have to have an interfacial energy which is low compared to the surface tension of the condensate. If the condensate is water, the surfaces or layers are referred to as water-repellent or hydrophobic. The contact angle of water on the surfaces of such layers is more than 90 degrees.
Processes for producing hydrophobic surfaces or layers are known from the literature. However, in turbines and power plant condensers they are subject to drop impact erosion. Depending on the moisture content of the steam, the drop size and the drop velocity and also the impact rate, this leads to premature wear to turbine and condenser components. With the specially hardened alloys and tube materials used heretofore and the coatings on turbine or condenser components, it was only possible to reduce the wear with a considerable outlay on materials and high production costs, and it was impossible to eliminate the wear altogether.
It has not heretofore been possible to develop hydrophobic surfaces or layers with an unlimited service life while maintaining contact angles of more than 90 degrees. The same also applies to completely erosion-resistant surfaces and layers for components of power plants, such as turbines and condensers.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a protective coating for metallic components that overcomes the disadvantages and drawbacks of the prior art protective coatings of this general type, and that not only has a strong hydrophobic surface but moreover offers a high resistance to drop impact erosion.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a protective coating for metallic components which are in direct contact with the condensate of a liquid medium, comprising at least two and preferably more layers of amorphous material for application to such component on top of one another.
There also is provided, in accordance with the invention, a metallic component suitable for direct contact with the condensate of a liquid medium, that is coated with the protective coating according to the invention.
There is furthermore provided, in accordance with the invention, a method of coating a metallic component suitable for direct contact with the condensate of a liquid medium, with the protective coating according to the invention.
It has been found, in accordance with the invention, that the resistance to drop impact erosion of homogenous surfaces increases as the hardness of the material from which they are made increases. The harder a surface, the more energy has to be applied to deform the surface or remove parts from it. The resistance to drop impact erosion therefore increases with the interfacial energy. Metallic or purely ceramic surfaces with an interfacial energy of a few thousand mJ/m
2
are more resistant to drop impact erosion than relatively soft layers, the interfacial energies of which are only a few tens of mJ/m
2
.
In the case of water as the fluid, on a hard surface the interfacial tension of this surface is therefore high compared to the surface tension of the water. This means that on the one hand, an erosion-resistant, homogenous, hard surface forms smaller wetting angles with water as it becomes more stable with respect to drop impact erosion. On the other hand, low-energy surfaces, which preferably have hydro-phobic properties, do not have a great resistance to drop impact erosion.
In view of these facts, the protective coating according to the invention must have an inhomogeneous structure which comprises at least two layers that have different properties, in order to be able to satisfy the demands with regard to both lack of wettability and erosion stability. The layers of the protective coating are all made from amorphous materials. It is quite possible for all the layers to be made from the same material. The layers may also be made from a different material which has the same properties. According to the invention, the protective coating has two types of layers, specifically a first type of layer with a high interfacial energy and a hardness of between 1500 HV and 3000 HV, and highly elastic deformation properties, so that it has a high erosion stability; and a second type of layer with an interfacial energy and elastic deformation properties that are lower than those of the first layer described. Its hardness is only 500 HV to less than 1500 HV. The number of layers of which the protective coating is composed is not limited to two layers, however.
In order to form the protective coating, first of all, if possible, a layer which has a high interfacial energy, highly elastic deformation properties and a hardness of between 1500 HV and 3000 HV is applied to the surface of a component which is to be protected. The thickness of this layer should be 1 &mgr;m to 4 &mgr;m. A second layer with a lower interfacial energy and lower elastic deformation properties, with a hardness of only 500 HV to less than 1500 HV, is applied to this first layer. The second layer should be less than 1 &mgr;m to 2 &mgr;m thick. According to the invention, the protective coating is always formed in such a way that the outwardly facing, final layer of the structure has hydrophobic properties and therefore has a lower interfacial energy and lower deformation properties, as well as a lower hardness, than the layer below it. It is quite possible for the structure of the protective coating to be expanded further, if necessary, and for an additional layer with high elastic deformation properties also to be applied to the latter layer and then finally for a layer with hydrophobic properties to be applied on the outer side.
The bonding strength of the protective coating on the component has to be very high, so that it cannot be detached over the course of time by the actions of external forces. The same also applies to the adhesion forces of the layers to one another. If the adhesion forces between a component and what is normally the first, inner, erosion-resistant layer of the protective coating are too low, so that there is a likelihood that the protective coating will rapidly become detached, the first, inner layer of the protective coating can also be formed by a layer with a lower interfacial energy and low
Blangetti Francisco
Reiss Harald
ALSTOM Technology Ltd.
Blackwell-Rudasill G.
Jones Deborah
Warnock Russell W.
LandOfFree
Protective coating for metallic components, metallic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Protective coating for metallic components, metallic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protective coating for metallic components, metallic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310360