Protection switch in a two-fiber optical channel shared...

Optical: systems and elements – Deflection using a moving element – Using a periodically moving element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S199200, C359S199200, C359S199200, C359S199200, C359S199200, C359S199200

Reexamination Certificate

active

06414765

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to single two-fiber optical channel shared protection rings, and particularly to protection switching in single two-fiber optical channel shared protection rings.
2. Technical Background
Optical protection ring topologies are currently being deployed by network providers because of their cost savings, survivability, and ability to self-heal. Ring topologies typically include a plurality of client access nodes that are interconnected by at least two optical fibers to form a ring. Traffic is transmitted from node to node around the ring. Wavelength Add/Drop multiplexers (WADMs) are employed at each node to allow clients to gain access to the ring. Client transmitters are coupled to the add portion of the WADM to insert client traffic onto the ring, whereas client receivers are coupled to the drop portion of the WADM to receive ring traffic.
Optical protection rings can survive and self-heal from ring fault conditions by providing duplicate and geographically diverse paths for all of the client traffic propagating on the ring. In a two-fiber ring, this is accomplished by providing two fibers that carry traffic in opposite directions. In addition, each fiber reserves approximately half of its bandwidth
30
for protection purposes. Thus, if a cable is cut between two nodes, or a wavelength channel transmitter becomes disabled at a particular node, or if there is a switch fabric failure, the ring will detect the fault condition, and route traffic around the damaged network component using the reserved protection bandwidth until a repair can be effected.
The protection switching used to implement the self-healing features of the ring is resident in each node. However, conventional protection switches have several shortcomings.
First, most protection switches are not versatile enough to provide protection for both multi-channel failures and single channel failures. Second, most protection switches employ large switching fabrics. Thus, if the switching fabric itself experiences a failure, a single point failure severely impacting the operation of the entire ring may result. Thus, what is needed is a protection switch that includes small modular switching fabrics to substantially reduce the possibility of single-point failures. Further, a protection switch is needed that will provide protection for both multi-channel failures and single channel failures.
SUMMARY OF THE INVENTION
The present invention includes a protection switch having a plurality of small modular switching fabrics that substantially reduce the possibility of single-point failures. Each modular switch fabric can be easily replaced without affecting other operational portions of the protection switch. The protection switch of the present invention provides protection for both multi-channel failures and single channel failures.
One aspect of the present invention is a protection switch in a node of a two-fiber optical channel shared protection ring. The node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber in the two-fiber optical channel shared protection ring propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes an optical signal monitor coupled to the two-fiber optical channel shared protection ring. The optical signal monitor is operative to detect multi-wavelength channel failures and single wavelength channel failures in the two-fiber optical channel shared protection ring. An electrical switching circuit is coupled to the optical signal monitor. The electrical switching circuit includes a plurality of modular switching fabrics. Each modular switching fabric of the plurality of modular switching fabrics includes a ring switch mode that is responsive to the multi-wavelength channel failures, and a span switch mode that is responsive to the single wavelength channel failures.
In another aspect, the present invention includes a modular switching fabric for use in a protection switch resident in a node of a two-fiber optical channel shared protection ring. Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes a first 3×1 switch coupled to a first primary client receiver. A first 2×1 switch is coupled to a first extra client receiver.
A second 3×1 switch is coupled to a second primary client receiver. A second 2×1 switch is coupled to a second extra client receiver. A controller is coupled to the first 3×1 switch, the second 3×1 switch, the first 2×1 switch, and the second 2×1 switch. The controller is operative to actuate the switches in order to receive the primary client's receive signal from a protection wavelength propagating on the first fiber instead of a working wavelength channel propagating on the second fiber, and pre-empt extra client traffic, in response to a multi-wavelength channel failure.
In yet another aspect, the present invention includes a two-fiber optical channel shared protection ring for bi-directional communications between a plurality of nodes. Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The protection switch includes a first 3×1 switch having inputs coupled to a first primary client transmitter, a first extra client transmitter, and a second primary client transmitter. A first 2×1 switch has an input coupled to the first extra client transmitter and an output connected to the first 3×1 switch. A second 3×1 switch has inputs coupled to a first primary client transmitter, a second extra client transmitter, and a second primary client transmitter. A second 2×1 switch has an input coupled to the second extra client transmitter and an output connected to the second 3×1 switch. A controller is coupled to the first 3×1 switch, the second 3×1 switch, the first 2×1 switch, and the second 2×1 switch. The controller is operative to actuate the switches in order to switch a primary client's transmission signal from a working wavelength propagating on a first fiber of the two fibers to a protection wavelength propagating on a second fiber of the two fibers in response to a multi-wavelength channel failure.
In yet another aspect, the present invention includes a method for switching bi-directional traffic between a plurality of nodes in a two-fiber optical channel shared protection ring. Each node includes a plurality of primary clients and a plurality of pre-emptible clients. Each fiber of the two fibers propagates at least one working wavelength channel dedicated to primary client traffic and at least one protection wavelength channel which may accommodate extra client traffic. The method includes providing a protection switch in each node of the plurality of nodes. Each protection switch is coupled to the two fibers, the plurality of primary clients, and the plurality of pre-emptible clients. The protection switch includes a plurality of modular switching fabrics. A fault condition is detected in the two-fiber optical channel shared protection ring. At least one of the modular switching fabrics is actuated in response to the step of detecting, whereby a primary client's transmission signal is switched from a working wavelength propagating on a first fiber of the two fibers to a protection wavelength propagating on a second fiber of the two fibers. The primary client's rec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protection switch in a two-fiber optical channel shared... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protection switch in a two-fiber optical channel shared..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protection switch in a two-fiber optical channel shared... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2898804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.