Prosthetic foot with reinforcing member

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Leg – Ankle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S055000, C623S056000

Reexamination Certificate

active

06241776

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a resilient prosthetic foot that has a reinforcement member to provide reinforcement. More particularly, the present invention relates to a prosthetic foot having at least a resilient forefoot member, and at least one resilient reinforcement member that is engaged after the forefoot or heel members move from a normal range of movement to an extreme range.
2. Prior Art
Many individuals have lost a limb for various reasons including war, accident, or disease.
In most instances these individuals are not only able to live relatively normal lives, but physically active lives as well. Often times, these individuals are aided in their everyday lives by a prosthetic limb. The objective of prosthesis is to provide an artificial limb that simulates the function and natural feel of the replaced limb.
With respect to prosthetic feet, the development of a functional and natural artificial foot has been limited only by material and imagination. Many designs have attempted to copy the anatomy of the foot or simulate its actions by replacing the bones and muscle with various mechanical components. Other designs have departed radically from mere anatomical copying or mechanical simulation by replacing the entire foot with an energy storage element, such as a spring. As the user steps onto the foot, the user's weight compresses the spring. As the user moves forward, the user's weight comes off the foot and the energy stored in the spring is used to propel the user forward.
Examples of such energy storing, spring-like feet having a forefoot member and a heel member include U.S. Pat. Nos. 5,037,444 and 4,547,913. U.S. Pat. No. 5,037,444 issued Aug. 6, 1991 to Phillips discloses a prosthetic foot having a forefoot portion and a heel portion. The forefoot portion has an attachment section, a curvilinear spring section, an arch section, and a toe section formed integrally with one another. The heel portion is removably attached to the forefoot portion at the intersection of the arch and toe sections by a bolt and nut. An elastomeric wedge is inserted between the forefoot portion and the heel portion. U.S. Pat. No 4,547,913 issued Oct. 22, 1985 to Phillips discloses a prosthetic foot having a forefoot portion and a heel portion. The forefoot portion and the heel portion are bound together with a “resin impregnated filament binding” by winding the filament around the members.
The stiffness of prosthetic feet typically vary according to the intended use. Feet intended for everyday use typically require a soft feel, and thus incorporate a loose spring. Feet intended for athletic use typically require strength, and thus incorporate a stiff spring. Although different prosthetic feet may be changed to suit the particular activity, such switching is inconvenient and at times it is impossible, such as a sudden need to run to catch, or avoid being hit by a bus. Feet designed for particular purposes are typically unsuited for other purposes. Stiff, athletic feet are too hard for everyday use, and loose, everyday feet are too fragile for athletic use. Multiple-use feet have been designed which are capable of many different uses, but without being particularly well suited for any use.
In addition, the performance of these energy storing feet has been altered in various ways, such as by using multiple springs in various configurations, using bladders or resilient materials disposed between various elements, and using multiple springs that deflect at different intervals of foot deflection to add resistance.
U.S. Pat. No. 5,290,319 issued Mar. 1, 1994 to Phillips discloses a prosthetic foot having a forefoot portion, a heel portion, and an auxiliary member disposed above the forefoot portion. A bladder is disposed between the auxiliary member and the forefoot portion. The pressure in the bladder is varied to adjust the performance of the foot. In this configuration, the auxiliary member is a structural member against which the bladder is compressed.
U.S. Pat. No. 5,387,246 issued Feb. 7, 1995 to Phillips discloses a prosthetic foot having a forefoot portion, a sole member, and an auxiliary or secondary stiffness member disposed above the forefoot portion. The secondary member adds stiffness to the foot when the foot is deflected sufficiently forward such as to engage the secondary member.
U.S. Pat. No. 4,721,510 issued Jan. 26, 1988 to Cooper et al. discloses a prosthetic foot having a relatively flexible primary foot member and a relatively stiff secondary foot member disposed above the primary foot member such that the spring force of the foot is increased as the primary foot member deflects to the secondary foot member.
It is desirable to further improve prosthetic feet to better simulate real feet, and improve the performance and response characteristics of prosthetic feet. Therefore, it would be advantageous to develop a prosthetic foot capable of more naturally simulating a real foot. It would also be advantageous to develop a prosthetic foot having a reinforcement member. In addition, it would be advantageous to develop a prosthetic foot having various degrees of stiffness.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of the present invention to provide a prosthetic foot capable of better simulating a real foot.
It is another object of the present invention to provide a prosthetic foot capable of various different stiffnesses through a range of motion of the foot.
It is yet another object of the present invention to provide a prosthetic foot with a reinforcement member to reinforce the forefoot, heel, or both.
These and other objects and advantages of the present invention are realized in a prosthetic foot having a resilient forefoot member and a resilient forefoot reinforcement member. The forefoot member has a base end coupled proximal an attachment location, and extends forward to a toe end at a toe location. In addition, the forefoot member defines an arch section between the base end and the toe end. The forefoot member moves through a range of motion with multiple stages of advancement, including at least a normal range and an extreme range. The resilient forefoot member has a resistance response to an applied force.
The forefoot reinforcement member has a base section coupled to the forefoot member at the arch section, and extends to a free end at a location between the arch section and the attachment location. The free end is spaced from the forefoot member and is disposed within the extreme range of motion of the forefoot member. The reinforcement member itself has a range of motion within the extreme range of motion of the forefoot member. Thus, the forefoot reinforcement member influences the range of motion and resistance response of the forefoot member.
In accordance with one aspect of the present invention, a flexible restraint may be coupled to and between the free end of the forefoot reinforcement member and the forefoot member. The restraint allows the forefoot member to move towards the forefoot reinforcement member, but couples the forefoot member to the forefoot reinforcement member in movement away from the forefoot reinforcement member.
In accordance with another aspect of the present invention, a resilient heel member has a-base end coupled to the resilient forefoot member, and extends rearward to a heel end at a heel location. Like the forefoot member, the heel member has a range of motion including a normal range and an extreme range, and has a resistance response to an applied force.
In accordance with another aspect of the present invention, a heel reinforcement member has a base section coupled to the forefoot member at the arch section, and extends under the forefoot member to a free end proximal the attachment location. The free section is disposed within the extreme range of motion of the forefoot member. Like the forefoot reinforcement member, the heel reinforcement member has a range of motion within the extreme range of motion of the forefoot member, and thus, the heel r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Prosthetic foot with reinforcing member does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Prosthetic foot with reinforcing member, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prosthetic foot with reinforcing member will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2495764

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.