Prosthetic foot providing plantar flexion and controlled...

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Leg – Ankle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S055000

Reexamination Certificate

active

06197066

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a prosthetic foot including an integral spring portion providing motion in the foot, particularly a unitary foot structure providing a selectable degree of plantar flexion, dorsiflexion and a stiff structure for toe off.
BACKGROUND OF THE INVENTION
The prosthetic limb and foot devices which have been available have either severely limited the mobility of the user, or have sought to reconstruct the complex foot and ankle structure through the use of very complex prosthetic structures to simulate a human gait. Unfortunately, a significant need for prosthetic limbs has been created in underdeveloped countries by recent conflicts and the widespread use of landmines. In these places having the greatest need, the use of complex prosthetic devices is made impossible by the high cost. Only the simplest prosthetic designs are affordable. The lack of motion in the foot of these designs, such as the SACH (solid ankle cushion heel) foot or the Jaipur foot, cause restrictions to mobility, particularly over rough terrain. The cost of the SACH foot and the long fabrication time of the Jaipur foot have meant that these devices are unable to address the current need. In addition to high cost and poor mobility, prior prosthetic designs have been susceptible to damage by water, and to material fatigue over undesirably short periods.
A prosthetic foot which attempts to simulate a human gait is disclosed in U.S. Pat. No. 4,645,509 issued to Model and Instrument Development Corporation Feb. 24, 1987. This device includes a resilient cantilever spring bonded to a surrounding low density material. The cantilever spring is designed to provide energy return, particularly for active use. Impact at the heel is reduced due to the low density material designed to provide heel cushioning. Flexure of the cantilever spring during plantar flexion is limited by the rigidity of the spring material. The end of the cantilever element is upturned, corresponding to the ball of a foot, to reduce stress on the keel during toe off. This cantilever device does not provide a stable structure for toe off. The design necessarily causes strain between the high and low density materials, in addition to the complexity and cost of manufacture. A further difficulty of this design is that the stiffness appropriate for energy return during active use may be too resistant for normal walking.
U.S. Pat. No. 4,555,817 issued to Roderick W. McKendrick incorporates flexibility by interconnecting a plurality of elements with a cable. A compressible rubber block is positioned between substantially rigid elements in the heel region to add flexibility and to provide resilience to return the elements to their original positions. The tension of the cable can be adjusted to permit more or less flexibility for rotation, lateral, and medial movements and plantar and dorsiflexion. Numerous parts must be assembled adding significant expense, and the flexibility imparted by wood, leather and rubber parts are subject to wear and hardening. In addition, plantar flexion is created by the loose connection of the cable and relative sliding movement. The range of plantar flexion or dorsiflexion is no greater than permitted lateral movements and thus normal movement for walking is restricted.
A further example of a flexible prosthesis is disclosed in U.S. Pat. No. 5,219,365 issued to Sabolich Inc., Jun. 15, 1993. Flexibility is primarily created by a highly arched keel. Additional flexibility for plantar flexion and dorsiflexion is introduced by a horizontal slot in the ankle portion. The keel is under constant pressure putting significant stress on the prosthetic material. The heel and toe portions spread apart with the pressure of each step causing an unnatural motion in the foot, and significant strain to the cosmetic covering. The keel design does not ever provide a stiff platform from which to toe off. The horizontal slot for increasing plantar flexion and dorsiflexion mobility is positioned in the rear of the ankle portion. As a result, no stop limits the dorsiflexion range to an appropriate toe off position.
U.S. Pat. No. 4,792,340 issued to Ernest M. Burgess in 1988 discloses a prosthetic ankle having a precisely formed kerf as a flexure joint. The flexibility of the ankle joint is very limited, intending to be used with a prosthetic foot having enhanced flexure characteristics. The kerf includes a double convolute section the surfaces of which contact each other to limit movement. The kerf provides narrow controlled limits to plantar flexion, dorsiflexion, axial rotation, inversion and eversion. Once the limit is met, the ankle structure becomes rigid in each direction and provides no further cushioning. In addition, the kerf including double convolute curves is difficult to manufacture, and on its own cannot provide the flexibility needed for a normal gait, particularly over uneven ground. The costs of combining a complex foot design and a complex ankle design are out of reach of the majority of patients in need of a prosthetic limb.
It is an object of the invention to provide a simple and economical foot prosthesis which simulates human movement by providing a controllable range of plantar flexion, dorsiflexion, inversion and eversion. Flexibility in the foot provides significant advantages in mobility over a simple rolling motion. The prosthesis is advantageously light weight and resistant to wear.
SUMMARY OF THE INVENTION
The present invention has found that an integrally formed c-shaped spring portion having an anterior gap, joining a connection platform and the heel and forefoot portions can provide a controlled range of natural mobility in a prosthetic foot as an economical design. In a further embodiment of the invention an additional oppositely facing c-shaped spring portion provides additional flexibility control.
In accordance with the invention there is provided a prosthetic foot comprising:
a foot portion of resilient material including a heel and a forefoot;
a connection platform for engaging a shank, flexibly secured to the foot portion, defining a substantially c-shaped aperture between them including a substantially horizontal anterior gap,
whereby the connection platform is deflectable between a rearwardly angled position, and a forwardly angled position limited to a selected angle where the connection platform abuts the forefoot closing the anterior gap, thereby permitting the foot to plantar flex varying in response to load during heel strike, and to dorsiflex to a selected angle prior to toe off.
In a further embodiment of the present invention there is provided a prosthetic foot as further including a substantially c-shaped posterior aperture between the connection platform and the heel having a substantially horizontal posterior gap for providing additional flexibility control for plantar flexion.
In a still further embodiment of the present invention there is provided a prosthetic foot comprising:
a foot portion of resilient material including a heel and a forefoot and an arched keel between them, the forefoot having a top surface above the arched keel;
a connection platform, for engaging a leg assembly, flexibly secured above the foot portion at a selected position between the heel and a toe;
a stop member on the platform spaced a selected distance from the top surface of the forefoot adapted to abut the top surface, for providing a selected angle of dorsiflexion, and limited inversion and eversion in use; and,
a spring joining the connection platform to the foot portion for flexible movement between an open rearwardly angled position for a range of plantar flexion to provide cushioning during heel strike, and a forwardly angled position abutting the top surface of the forefoot to provide stiffness during toe off, and further providing a fixed connection between the platform and the foot portion for support in a neutral position.
In accordance with the present invention a further embodiment further comprises a prosthetic foot wherein the spring joining the platform to the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Prosthetic foot providing plantar flexion and controlled... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Prosthetic foot providing plantar flexion and controlled..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prosthetic foot providing plantar flexion and controlled... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516743

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.