Projection type display apparatus

Optics: image projectors – Composite projected image – Multicolor picture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C353S081000, C349S008000

Reexamination Certificate

active

06464360

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a projection type display apparatus utilizing a spatial light modulator (light valve), and more particularly, to a projection type display apparatus having the structure for securing optically stable performance against influence of external stress and effectively restricting image quality degradation of projection image.
2. Related Background Art
A known example of the spatial light modulator (light valve) conventionally used for projection type display apparatus is a spatial light modulator of a phase difference modulation type (polarization modulation type), which spatially modulating light, utilizing polarization. For example, a modulator formed using the liquid crystal (phase difference modulation type liquid crystal light valve) is practically available as the spatial light modulator of the phase difference modulation type.
The conventional projection type display apparatus using such a spatial light modulator of the phase difference modulation type uses a polarizing beam splitter (primary polarizing beam splitter) serving as a polarizer and an analyzer. For the below description, let us assume that the polarizing beam splitter has such a property as to reflect an s-polarized light component and transmit a p-polarized light component. In the conventional projection type display apparatus, the polarizing beam splitter splits light incident thereinto (light directly incident from an illumination light source or light after color-separated before incidence thereto) into light of the p-polarized light component and light of s-polarized light component, and normally, the s-polarized light component out of the light thus split into is projected to the spatial light modulator. After modulated and reflected by a liquid crystal layer of the spatial light modulator, the light again goes back into the polarizing beam splitter. On this occasion, the reflected light from the spatial light modulator
4
is analyzed by the polarizing beam splitter. The above polarizing beam splitter reflects the s-polarized light component, but transmits only the p-polarized light resulting from the modulation by the spatial light modulator. The transmitted light (that is, the analyzed light) is projected as a projection image through a projection optical system onto a screen or the like.
Many polarizing beam splitters and color separating/combining optical systems used in such projection type display apparatus have been proposed as liquid immersion type optical components in such structure that a plate of an optically transparent material coated with a coating for polarizing beam splitter and a plate of an optically transparent material coated with a color separating dichroic film were respectively immersed in a liquid with adjusted refractive index, as disclosed for example in U.S. Pat. No. 4,687,301 owned by Hughes Aircraft Co. The refractive index of the above liquid, at a predetermined temperature of the liquid, is adjusted so as to be equal to that of the plate of the transparent material. The reason why the beam splitter is immersed in the liquid is that, supposing the beam splitter were set in air, the interface of the coating would be in a relation of air against transparent material and the polarizing beam splitter would fail to function because of a difference in refractive index.
In the conventional projection type display apparatus, the light incident into the polarizing beam splitter is split by the polarizing beam splitter into the p-polarized light component and s-polarized light component, among which the s-polarized light component is projected to the color separating/combining optical system. After the color separating/combining optical system separates the incident s-polarized light component into some color components, the separated color components are respectively modulated by liquid crystal layers and respectively reflected by reflection layers of light valves which are prepared in accordance with the color components. The modified color components are combined by the color separating/combining optical system, and thereafter the combined light returns to and is analyzed by the polarizing beam splitter. The analyzed light is projected as a projection image through the projection optical system onto the screen or the like.
SUMMARY OF THE INVENTION
The inventors found out the following problems after investigation on the conventional projection type display apparatus employing the polarizing beam splitter and the color separating/combining optical system of the liquid immersion type as discussed above.
First, in the case of the above liquid immersion type polarizing beam splitter and the liquid immersion type color separating/combining optical system, a change of the refractive index of the liquid in which the plate of the transparent material is immersed depends upon a change of the temperature of the liquid. Namely, even with the liquid adjusted in its refractive index at a certain liquid temperature, the temperature change of the liquid itself will make a difference between the refractive index of the liquid and the refractive index of the plate of the transparent material. This changes the performances of the entire optical components. For example, in the case of a certain sample (the liquid for the above liquid immersion type optical components), the refractive index changes about 0.000349 per temperature rise of 1° C., and this change rate is two order greater than those of substrate materials for plates of normal transparent materials. Normally, use environments (for example, temperatures) of the projection type display apparatus include a possibility of change of about 20° C. to 60° C., so that the difference in refractive index becomes unignorable. Since dispersion also changes, it causes chromatic aberration and chromatic unevenness in the projection image.
Second, in the case of the above liquid immersion type polarizing beam splitter and the liquid immersion type color separating/combining optical system, if the temperature change in the liquid is not even, the temperature dependence of the refractive index of the liquid as discussed above will affect the evenness of the refractive index of the liquid, thereby forming an index distribution in the liquid. In practical projection type display apparatus, the liquid temperature rarely changes evenly over the entire liquid (whereby the refractive index of the entire liquid is not even), which will be a great cause to damage the evenness of the projection image.
Third, in the case of the liquid immersion type polarizing beam splitter and the liquid immersion type color separating/combining optical system, the above uneven temperature change of the liquid destroys the evenness of the density of the liquid as well as that of the refractive index of the liquid as discussed above, resulting in causing convection in the liquid. Since this convection causes a time change of the uneven index distribution in the liquid as described above, the occurrence of convection will be a cause to change the unevenness of picture quality with time in the projection type display apparatus.
Fourth, in the above liquid immersion type polarizing beam splitter and the liquid immersion type color separating/combining optical system, the volume of the liquid itself also changes with a change of the liquid-temperature. In the case of the above sample, the temperature change of 1° C. changes the volume at 0.00073 cc per cc. The use environments (for example, the temperatures) of the projection type display apparatus cover a temperature difference of about 40° C., but, considering transportation and storage in warehouse, it is necessary to take account of the temperature range of approximately −10° C. to 80° C. Although the volume change itself of the liquid gives a small effect-on the projection image, some mechanism is needed for absorbing the volume change of the liquid because of the configuration of the apparatus.
Fifth, if there is dust in the liquid of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Projection type display apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Projection type display apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Projection type display apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2985825

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.