Projection optical system and projection exposure apparatus

Optical: systems and elements – Lens – With field curvature shaping

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S651000, C359S663000, C359S754000

Reissue Patent

active

RE038403

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to projection optical systems as well as projection aligners used for reducing and projecting patterns on the first object onto the second object such as a substrate, and particularly relates to projection optical systems as well as projection aligners which are ideal for projection alignment of integrated circuit patterns formed on a reticle (mask) as the first object onto a substrate (wafer) as the second object.
2. Related Background Art
As integrated circuit patterns become more refined, projection optical systems used for wafer printing are required to have still more higher performance. Under such circumstances, in order to improve resolution of projection optical systems, it can be considered either to further shorten an exposure wavelength &lgr; or to increase a numerical aperture (NA) of projection optical systems.
In recent years, in order to accommodate further refinement of print patterns, a light source to be used for exposure is being substituted from the one that emits g line (436 nm) ray to mainly the one that emits i line (365 nm) ray. Furthermore, a light source that emits light with shorter wavelength, such as excimer laser (248 nm, 193 nm), is about to be used.
And a projection optical system which performs projection alignment of a pattern on a reticle onto a wafer by use of the aforementioned various exposure wavelengths is being proposed.
A projection optical system is required to reduce image distortion as well as to improve resolution. What is termed as “image distortion” herein are, besides the image distortion (distortion) a projection optical system has, the one due to curvature of a wafer to be imaged thereon on the image side of a projection optical system and the one due to curvature of a reticle on the object side of the projection optical system on which IC patterns and such are drawn. In recent years, print patterns are becoming even more refined, and the requirement for decreasing image distortion is becoming more severe.
In order to diminish an influence of wafer curvature upon image distortion, an optical system whose image side is made nearly telecentric which places an exit pupil position far from an image position has been used.
Meanwhile, with regard to reduction of image distortion caused by reticle curvature, an optical system that places an entrance pupil position of a projection optical system relatively far from an object plane whose object side is made nearly telecentric has been considered, and such a projection optical system has been proposed. Some of such examples are set forth in Patent Disclosure Showa #63-118115, Patent Disclosure Heisei #4-157412, and Patent Disclosure Heisei #5-173065.
The projection optical systems proposed in each of the above mentioned Patent public information, however, had small numerical apertures (NA) and insufficient resolution, or had narrow exposure areas. Furthermore, in spite of more severe requirement to reduce image distortion, all it has been done in the above reference patents was to simply place an entrance pupil position of the projection optical systems relatively farther from the object plane (reticle), and the deviation from a fully telecentric system (hereinafter called “deviation from telecentricity”) on the object side as well as the image side (wafer side) was so large that is was insufficient to accommodate further refinement of print patterns.
Also, if deviation from telecentricity on the object side (reticle side) is large, an illumination light for illuminating a reticle uniformly needs to enter in the manner that the influence of said deviation from telecentricity is compensated by the illumination optical system. Therefore, it has been extremely difficult to design an illumination optical system to be installed in an aligner.
The present invention was accomplished with the foregoing in mind, and an object of this invention is, while maintaining a comparatively large exposure area, to provide a projection optical system with high resolution and a large numerical aperture with small constraint to the illumination optical system, whose deviation from telecentricity on the object side as well as the image side is extremely small even when the flatness of the first object (reticle) as well as the second object (wafer) is unfavorable, so as to be able to obtain substantially small image distortion, and to provide a projection aligner provided therewith.
SUMMARY OF THE INVENTION
One aspect of the present invention for the purpose of achieving the aforementioned object is a projection optical system that projects an image of a first object with fixed reduced magnification onto a second object, and it comprises, viewed from said first object side, in order of succession, a first group of lenses with positive refractive power G
1
, a second group of lenses G
2
virtually constituted by afocal systems, and a third group of lenses G
3
with positive refractive power, and
if a focal length of the overall system is represented by F, projection magnification of said projection optical system is represented by B, a distance between said first object and said second object is represented by L, a distance from an entrance pupil position of said projection optical system or a position where an extension of an incident ray from an object intersects an optical axis (hereinafter called “an incident point position corresponding to a finite object height” for convenience) that can be found when a ray from the second object side of said projection optical system that is parallel to the optical axis of said projection optical system is incident on said projection optical system to said first object plane is represented by e, and a height of said ray from the optical axis at said first object plane when said ray that determines an entrance pupil, or an incident point position corresponding to a finite object height of said projection optical system, passes through said projection optical system is represented by h, then it is constituted so as to satisfy the following conditions:
1.8≦|F/(B·L)|  (I)
|h/e|≦3/1000
A projection aligner, according to an other aspect of the present invention, comprises an illumination system that illuminates the first object on which a fixed pattern is formed, a projection optical system which projects the image of said first object onto the second object, the first supporting means which supports the first object, and the second supporting means which supports the second object, and
said projection optical system thereof comprises, viewed from said first object side, in order of succession, the first group of lenses G
1
with positive refractive power, the second group of lenses G
2
virtually constituted by afocal systems, and the third group of lenses G
3
with positive refractive power, and
when the focal length of the overall system is represented by F, the projection magnification of said projection optical system is represented by B, the distance between said first object and said second object is represented by L, the distance from an entrance pupil position of said projection optical system or an incident point position corresponding to a finite object height that can be found when a ray from the second object side of said projection optical system that is parallel to the optical axis of said projection optical system is incident on said projection optical system to said first object plane is represented by e, and the height of said ray from the optical axis at said first object plane when said ray that determines an entrance pupil position, or an incident point position corresponding to a finite object height of said projection optical system, passes through said projection optical system is represented by h, then it is constituted so as to satisfy the following conditions:
1.8≦|F/(B·L)|  (I)
|h/e|≦3/1000


REFERENCES:
patent: 3504961 (1970-04-01), Hoogland et al.
patent:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Projection optical system and projection exposure apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Projection optical system and projection exposure apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Projection optical system and projection exposure apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3256363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.