Optics: eye examining – vision testing and correcting – Spectacles and eyeglasses – Ophthalmic lenses or blanks
Reexamination Certificate
2002-01-31
2003-07-22
Sugarman, Scott J. (Department: 2873)
Optics: eye examining, vision testing and correcting
Spectacles and eyeglasses
Ophthalmic lenses or blanks
Reexamination Certificate
active
06595638
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to multifocal ophthalmic lenses. Such lenses are well known; they provide an optical power which varies continuously as a function of the position on the lens; typically when a multifocal lens is mounted in a frame, the power in the bottom of the lens is greater than the power in the top of the lens.
In practice, multifocal lenses often comprise an aspherical face, and a face which is spherical or toric, machined to match the lens to the wearer's prescription. It is therefore usual to characterize a multifocal lens by the surface parameters of its aspherical surface, namely at every point a mean sphere S and a cylinder.
The mean sphere S is defined by the following formula:
S
=
n
-
1
2
⁢
(
1
R
1
+
1
R
2
)
where R
1
and R
2
are the minimum and maximum radii of curvature, expressed in meters, and n is the refractive index of the lens material.
The cylinder is given, using the same conventions, by the formula:
C
=
(
n
-
1
)
⁢
&LeftBracketingBar;
1
R
1
-
1
R
2
&RightBracketingBar;
Such multifocal lenses adapted for vision at all distances are called progressive lenses. Progressive ophthalmic lenses usually comprise a far vision region, a near vision region, an intermediate vision region and a main meridian of progression passing through these three regions. French patent 2,699,294, to which reference may be made for further details, describes in its preamble the various elements of a progressive multifocal ophthalmic lens, together with work carried out by the assignee in order to improve the comfort for wearers of such lenses. In short, the upper part of the lens, which is used by the wearer for distance vision, is called the far vision region. The lower part of the lens is called the near vision region, and is used by the wearer for close work, for example for reading. The region lying between these two regions is called the intermediate vision region.
The difference in mean sphere between a control point of the near vision region and a control point of the far vision region is thus called the power addition or addition. These two control points are usually chosen on the main meridian of progression defined below.
For all multifocal lenses, the power in the various far, intermediate and near vision regions, independently of their position on the lens, is determined by the prescription. The latter may comprise just a power value for near vision or a power value for far vision and an addition, and possibly an astigmatism value with its axis and prism.
For progressive lenses, a line called the main meridian of progression is a line used as an optimization parameter; this line is representative of the strategy for using the lens by the average wearer. The meridian is frequently a vertical umbilical line on the multifocal lens surface, i.e. alignment for which all points have zero cylinder. Various definitions have been proposed for the main meridian of progression.
In a first definition, the main meridian of progression is constituted by the intersection of the aspherical surface of the lens and an average wearer's glance when looking straight ahead at objects located in a meridian plane, at different distances; in this case, the meridian is obtained from a definitions of the average wearer's posture—point of rotation of the eye, position of the frame, angle the frame makes with the vertical, near vision distance, etc.; these various parameters allow the meridian to be drawn on the surface of the lens. French patent application 2,753,805 is an example of a method of this type in which a meridian is obtained by ray tracing, taking account of the closeness of the reading plane as well as prismatic effects.
A second definition consists in defining the meridian using surface characteristics, and notably isocylinder lines; in this context, an isocylinder line for a given cylinder value represents all those points that have a given cylinder value. On the lens, horizontal segments linking 0.50 diopter isocylinder lines are traced, and the mid-points of these segments are considered. The meridian is close to these mid-points. We can thus consider a meridian formed from three straight line segments which are the best fit to pass through the middles of the horizontal segments joining the two isocylinder lines. This second definition has the advantage of allowing the meridian to be found from measurement of lens surface characteristics, without advance knowledge of the optimization strategy that will be used. With this definition, isocylinder lines for half the power addition can be considered instead of considering 0.50 diopter isocylinder lines.
A third definition of the meridian is proposed in the assignee's Patents. To best satisfy the requirements of presbyopic spectacle wearers and improve progressive multifocal lens comfort, the assignee has proposed adapting the form of the main meridian of progression as a function of power addition, see French patent applications 2,683,642 and 2,683,643. The meridian in those patent applications is formed by three segments forming a broken line. Starting from the top of a lens, the first segment is vertical and has as its lower end, the mounting center (defined below). The top point of the second segment is located at the mounting center and makes an angle &agr; with the vertical which is a function of power addition, for example
&agr;=f
1
(
A
)=1.574.
A
2
−3.097.
A+
12.293.
The second segment has a lower end at a vertical distance on the lens which is also dependent on power addition; this height h is for example given by
h=f
2
(
A
)=0.340.
A
2
−0.425.
A−
6.422;
this formula gives a height in mm, in a reference frame centered on the lens center. The upper end of the third segment corresponds to the point at which the lower end of the second segment is located, and it makes an angle &ohgr; with the vertical which is a function of power addition, for example
&ohgr;=f
3
(
A
)=0.266.
A
2
−0.473.
A+
2.967.
In this formula, as in the preceding ones, the numerical coefficients have dimensions suitable for expressing the angles in degrees and the height in mm, for a power addition in diopters. Other relations apart from this can obviously be used for defining a 3-segment meridian.
A point, called the mounting center, is commonly marked on ophthalmic lenses, whether they are progressive or not, and is used by the optician for mounting lenses in a frame. From the anthropometric characteristics of the wearer—pupil separation and height with respect to the frame—the optician machines the lens by trimming the edges, using the mounting center as a control point. In lenses marketed by the assignee, the mounting center is located 4 mm above the geometric center of the lens; the center is generally located in the middle of the micro-etchings. For a lens correctly positioned in a frame, it corresponds to a horizontal direction of viewing, for a wearer holding his/her head upright.
French patent application serial number 0,006,214 filed May 16, 2000 tackles the problem of mounting progressive multifocal lenses in frames of small size: it can happen, when such lenses are mounted in small frames, that the lower portion of the near vision region is removed when the lens is machined. The wearer then has correct vision in the far and intermediate vision regions, but suffers from the small size of the near vision region. The wearer will have a tendency to use the lower part of the intermediate vision region for close work. This problem is particularly acute in view of the current fashion trend towards frames of small size.
Another problem encountered by wearers of progressive multifocal lenses is that of fatigue when performing prolonged work in close or intermediate vision. The near vision region of a progressive lens is indeed located in the bottom part of the lens, and prolonged use of the near vision region can produce fatigue in some spectacle wearers.
One last problem is that of wearer adaptation to such l
Ahsbahs Francoise
Devie Pierre
Essilor International
Fish & Richardson P.C.
Sugarman Scott J.
LandOfFree
Progressive multifocal ophthalmic lens with rapid power... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Progressive multifocal ophthalmic lens with rapid power..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Progressive multifocal ophthalmic lens with rapid power... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095952