Education and demonstration – Means for demonstrating apparatus – product – or surface... – Land or water vehicle or component thereof
Reexamination Certificate
1998-10-02
2002-04-16
Rovnak, John Edmund (Department: 3713)
Education and demonstration
Means for demonstrating apparatus, product, or surface...
Land or water vehicle or component thereof
C434S062000, C434S067000, C434S071000
Reexamination Certificate
active
06371766
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates, in general, to motor vehicles and, more specifically, to methods and apparatus for designing motor vehicles.
The design of automotive vehicles, such as automobiles, trucks, etc., usually begins with the development of various sketches and drawings showing the shape of the various body panels and other components of the vehicle. Three-dimensional clay models and, more recently, computer generated models, are then created to provide a visual image of the proposed vehicle design. Changes to the shape of the vehicle at this stage entail time consuming, highly skilled labor, even if such changes are on the order of only several millimeters in a particular dimension.
In order to design and market a successful vehicle, an accurate assessment of consumer needs, the market and the competition with regard to size and styling of a vehicle, among other factors, must be determined at an early stage of the vehicle design. Typically, models, known in the industry as “bucks”,are constructed to simulate a particular body component or vehicle section, such as the interior passenger compartment of a vehicle, the exterior shell, trunk, engine compartment, undercarriage, etc. Such bucks are designed for a specific vehicle and any changes to the parts thereof require additional labor and time. Furthermore, a number of identical bucks or test stands are designed for each different vehicle model made by a particular manufacturer for use by various design and engineering personnel.
Ergonomics, or the interaction of the vehicle with the user, is becoming an important factor in the design of automotive vehicles. Ergonomics involves the spatial relationship of various components with each other and the user, such as the driver or passenger of a vehicle. In order to provide a comparison of various ergonomic factors, a number of different bucks would be designed, each having a different spacial relationship of components. Consumers sit in or view each buck and provide their opinions in response to detailed questions relating to various facets of each design. This information is utilized by the vehicle manufacturer to develop a new vehicle or to refine an existing vehicle.
In order to expedite the design of a vehicle and to adequately assess all of the ergonomic and other factors associated with the design of a vehicle, attempts have been made to provide universal bucks which are adjustable in size and shape so as to enable a number of different designs to be tested in a time efficient manner. One such attempt by some of the inventors of the present application resulted in the development of a computer controlled buck which incorporated a seat, steering column, instrument panel, gear shifter, floor pan and front and rear seats. Most of the above-named components were variably adjustable in position in up/down or fore/aft directions as well as being adjustably positionable laterally across the width of the test buck. While this buck was effective in evaluating various vehicle interior designs and spatial relationships, it did not incorporate any exterior body panels which would lend it to testing of entire vehicle shapes, both interior and exterior, as well as how such exterior body panels interact spatially with the internal vehicle components and/or passenger.
Certain of the Applicants then devised a programmable vehicle model, shown in U.S. Pat. No. 5,384,704, which includes the aforementioned adjustable components or assemblies mounted within a complete simulated vehicle including telescoping and expandable/retractable body panels to simulate the complete exterior body surface of a vehicle. While the programmable vehicle model has proven successful, it has been discovered that further enhancements could be made to it to provide greater versatility or adjustability of certain components to enable the position of certain components within a vehicle to variably adjusted to aid in the design process.
Thus, it would be desirable to provide a programmable vehicle model in the form of an entire full-size vehicle in which substantially all of the vehicle components are provided with enhanced adjustably in position with respect to each other to create different vehicle shapes and component spatial relationships. It would also be desirable to provide a dimensionally adjustable vehicle component for use on a stand alone, individual basis or as part of a vehicle subassembly to provide adjustability in position of various portions of the component with respect to each other and/or to adjacent components to create different components spatial relationships.
SUMMARY OF THE INVENTION
The present invention is a programmable vehicle model which includes vehicle components which are dimensionally adjustable in some or all of the up/down, fore/aft and cross car directions.
The programmable vehicle model includes a platform on which various panel support structures are mounted. A plurality of vehicle body panels are mounted on the support structures in a vehicle body position to simulate a full-size vehicle body. At least certain of the body panels and/or interior components are formed of a plurality of sections which are mounted in an overlapping, telescopingly adjustable positional relationship. A drive means, mounted on at least one of the panel or component sections, adjustably positions the sections with respect to each other at any selectable position to vary at least one of the height, width and length of the overall body panel or component position.
A control means executing a stored control program is provided for controlling the drive means to vary the position of the body panels and/or vehicle components.
A cross car carriage formed of a plurality of movable plates is mounted on the platform and is movable in a lateral direction by the control means to any desired position. A fore/aft carriage formed of another set of movable plates are slidably disposed on the cross car carriage plates to provide controlled fore/aft movement of various body components. Vertical displacement means are also provided for variably displacing certain body panels, such as the vehicle hood, roof, trunk, and certain components, such as the vehicle seats, floors, instrument panel, steering column, center console, and accelerator and brake pedals, in vertical or up and down directions. Horizontal displacement means are provided for variably displacing various body panels and components including the instrument panel, accelerator and/or brake pedals, steering column, seats, front and rear floors, hood, trunk and roof panels and the center console along horizontal axes extending fore/aft and cross car or laterally along the vehicle.
An exterior body panel, such as a door, roof or hood, is formed of a plurality of telescopingly overlapping sections which are configured such that the plurality of sections of each body panel present a solid exterior surface regardless of their degree of overlap with respect to each other. This avoids any unsightly gaps between such body sections which would detract from the overall appearance of the vehicle.
In a preferred embodiment, the programmable vehicle model of the present invention includes a platform, and panel support means including first and second pairs of longitudinally spaced pillars, the pillars in each of the first and second pairs of pillars being laterally spaced on the platform, each of the first and second pairs of pillars being laterally and longitudinally movable relative to the platform. A plurality of vehicle body panels are mounted on the panel support means in vehicle body positions simulating a vehicle. First and second pairs of upper pillar members are each angularly and extensively mounted with respect to the first and second pairs of pillars, respectively.
A vehicle roof includes a first pair of frontmost roof frames, each carrying a frontmost roof panel, and a second pair of rearmost roof frames, each carrying one rearmost roof panel. The first and second pairs of frontmost and rearmost roof panels
Doll Brian C.
Fox John A.
Sharples Thomas M.
Zeile Kim A.
Prefix Corporation
Rovnak John Edmund
Young & Basile PC
LandOfFree
Programmable vehicle model does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Programmable vehicle model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Programmable vehicle model will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2849800