Programmable pain reduction device

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06662051

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a pain treatment device, and more particularly to transcutaneous electrical nerve stimulation (TENS) devices and methods for programming and operating such devices to maximize effectiveness.
2. Description of the Prior Art
Chronic pain plagues over 100 million Americans on a daily basis. Many health regimens have been developed to alleviate chronic pain involving a variety of evidence-based and nonevidence-based therapies. Pain treatment programs usually involve pharmacological agents or neurosurgical/anesthesia based interventions. Unfortunately, some of the most effective treatments have serious side effects, lose their potency with prolonged use, result in dependence or are prescribed in inadequate amounts. Because of this, the search for pain treatment programs has involved a variety of adjuvant treatments including transcutaneous electrical nerve stimulation (TENS) and acupoint stimulation (acupuncture).
TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION(TENS)
Although there were efforts to utilize electrical stimulation to suppress pain 2000 years ago, a detailed, scientific investigation was finally conducted by Professor Galvani of the University of Bologna in the early 1800s. In 1967, Dr. Sweet developed one of the first modem electrical apparatus for suppression of organic pain. TENS (transcutaneous electrical nerve stimulation) is a procedure that applies controlled bursts of electrical impulse on the skin to the nervous system in order to reduce pain. A mild tingling sensation and possibly muscle twitch is felt by the patient using a TENS device. A TENS device can be used by a patient at varying locations numerous times throughout the day. TENS therapy is based on a non-invasive, non-narcotic concept of pain management. It is non-addictive, not subject to abuse and does not interact with drugs. TENS has been proven to be an effective modality in the treatment of a variety of organic pain problems including: chronic neck and back pain, bursitis, arthritic disease.
Although there are many theories as to transmission of pain from the nervous system to the brain, gate control and endorphin theory have emerged as the best and most generally accepted evidence based explanations for the efficacy of TENS in the treatment of pain. Melzack and Wall in 1965 described the Gate Control Theory of Pain (GCT). (Melzack, 1965) GCT states that pain can be inhibited and controlled by “closing the gate” on pain signals as they arrive at the central nervous system. Pain impulses traveling along a nerve, through the spinal cord, and to the brain can be modified at any point along the transmission route. Pain signals carried by small, slow conducting peripheral nerve fibers (C-fibers) can be blocked by many things including stimulation of the large diameter, rapidly conducting peripheral nerve fibers (A fibers). GCT occurs in a segment of the spinal cord containing many T-cells called the Substantia Gelatinosa. The balance between A and C fibers determines the degree of pain. Stimulation of A fibers by a variety of stimuli (scratching, pressure, vibration or high amplitude electrical stimulation) without much stimulation of C fibers, will close the gate. Unfortunately, the problem of accommodation requires more and more variation of treatment parameters to keep the gate closed to pain.
The major problem with electrical stimulation, however, continues to be accommodation, whereby the stimulated nerve accommodates itself over time to the electrical charge, diminishing the effectiveness of treatment. A variety of U.S. Pat. Nos. (e.g. 2,622,601, 2,771,554) involve TENS devices with the means to vary the rate, amplitude or pulse width of the generated electrical pulse. Unfortunately, accommodation would still occur unless an individual manually adjusted the controls prior to or during the treatment. The process was mentally and physically demanding and maximum pain relief was not provided. For example, U.S. Pat. No. 4,019,519 (Geerling) discloses a unit having only its amplitude adjustable. U.S. Pat. No. 4,084,595 (Miller), and U.S. Pat. No. 4,759,368 (Spanton) disclose TENS devices in which the stimulus signal has a manually and independently varied rate, amplitude and pulse width. To provide improved output pulse compensation, one TENS device (U.S. Pat. No. 5,184,617 to Harris et al.) provides manual adjustment of pulse width control linked to a predetermined change in range of intensity of the pulses. Although variation enabled one to deal with accommodation, pain relief was sacrificed due to the interaction between amplitude and pulse width. As the duration of pulse is shortened, amplitude must be increased to maintain the efficacy of stimulus. The relationship when plotted graphically is known as a strength-duration curve. Thus, not only must a TENS unit have adjustable amplitude and pulse width, but it must also be able to modulate those values to optimize pain relief.
In addition to amplitude and pulse width, the rate of pulses must vary so as to minimize accommodation. U.S. Pat. No. 2,808,826 (Reiner), disclosed a unit that permitted instantaneous changes in pulse width and amplitude to two pre-set points along the strength duration curve. U.S. Pat. Nos. 4,340,063, 4,431,002 and 4,442,839 (Maurer), disclose units with modulation of amplitude, pulse width, and repetition rates, but the problem of accommodation still existed.
Acupuncture
Acupuncture has existed in China for over 4,000 years, and it spread to Korea in 300 AD, to Japan in the 1600s and to Europe by the 1800s. Although mentioned in a surgical treatise by Billroth in 1863, and in Osler's 1912
Principles and Practices of Medicine,
interest in the U.S. dramatically increased following Nixon's 1971 trip to China. The World Health Organization has indicated that over one third of the world's population is using acupuncture at the present time.
The discovery in 1975 that the pain receptors in the brain are blocked by a variety of endogenous opiate-like substances, including endorphins, was a major advance in the understanding of acupuncture. (Hughes 1975) Endorphin theory postulates that stimulation of the nervous system, by needles or more effectively by low frequency electrical current, will trigger the release of naturally occurring pain making morphine-like substances including endorphins and enkephalins. These naturally occurring substances block pain signals from reaching the brain by a mechanism similar to conventional drug therapy but without the side effects of morphine. Additional factors in the transmission and central amplification of pain signals involve the so-called NMDA receptor and the chemical neurotransmitter substance P. These substances can trigger long-term anatomical changes in both sensory and spinal nerves, making these cells more responsive to later pain stimulation. Endorphin theory and gate control theory have provided a generally accepted neurochemical explanation for the efficacy of acupuncture. (Han 1998)
The importance of proper acupuncture point location has been emphasized for over 3000 years. The traditional 360 physiologically active points were discovered by trial and error. Meridian theory and a variety of pre-scientific era explanations contributed to an increase to over 1000 points. Most of the useful points coincide with motor points and lie close to nerve trunks or Golgi tendon organs. Traditional and electrical acupuncture today may be practiced with knowledge of 50 physiologically active points. (Ulett, 1992)
The use of electrical stimulation of acupoints can be traced back to 1764 in Japan. It is generally accepted that general acupuncture with electrical stimulation increases the effectiveness of pain relief. Evidence based research about acupuncture and acupoint transcutaneous electrical nerve stimulation, however, continues to emphasize the critical importance of finding the proper location and parameters of stimulation for each individual. A circuit for electrotherapy and electroni

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Programmable pain reduction device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Programmable pain reduction device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Programmable pain reduction device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100180

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.