Optical: systems and elements – Optical modulator – Light wave temporal modulation
Reexamination Certificate
1999-11-23
2001-08-21
Dang, Hung Xuan (Department: 2873)
Optical: systems and elements
Optical modulator
Light wave temporal modulation
C359S223100, C359S880000
Reexamination Certificate
active
06278542
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a programmable light beam shaping device. More specifically, the present invention teaches a control system and three micromirror devices which can alter the shape and color of light beams passing therethrough, and also provide various effects to those shaped light beams using image processing circuitry that is provided in the remote luminaire.
BACKGROUND OF THE INVENTION
It is known in the art to shape a light beam. This has typically been done using an element known as a gobo. A gobo element is usually embodied as either a shutter or an etched mask. The gobo shapes the light beam like a stencil in the projected light.
Analog gobos are simple on/off devices: they allow part of the light beam to pass, and block other parts to prevent those other parts from passing. Hence mechanical gobos are very simple devices. Modern laser-etched gobos go a step further by providing a gray scale effect.
Typically multiple different gobo shapes are obtained by placing the gobos are placed into a cassette or the like which is rotated to select between the different gobos. The gobos themselves can also be rotated within the cassette, using the techniques, for example, described in U.S. Pat. Nos. 5,113,332 and 4,891,738.
All of these techniques have the drawback that only a limited number of gobo shapes can be provided. These gobo shapes must be defined in advance. There is no capability to provide any kind of gray scale in the system. The resolution of the system is also limited by the resolution of the machining. This system allows no way to switch gradually between different gobo shapes. In addition, moving between one gobo and another is limited by the maximum possible mechanical motion speed of the gobo-moving element.
Various patents and literature have suggested using a liquid crystal as a gobo. For example, U.S. Pat. No. 5,282,121 describes such a liquid crystal device. Our own pending patent application also so suggests. However, no practical liquid crystal element of this type has ever been developed. The extremely high temperatures caused by blocking some of this high intensity beam produce enormous amounts of heat. The projection gate sometimes must block beams with intensities in excess of 10,000 lumens and sometimes as high as 2000 watts. The above-discussed patent applications discuss various techniques of heat handling. However, because the light energy is passed through a liquid crystal array, some of the energy must inevitably be stored by the liquid crystal. Liquid crystal is not inherently capable of storing such heat, and the phases of the liquid crystal, in practice, may be destabilized by such heat. The amount of cooling required, therefore, has made this an impractical task. Research continues on how to accomplish this task more practically.
It is an object of the present invention to obviate this problem by providing a digital light beam shape altering device, e.g. a gobo, which operates completely differently than any previous device. Specifically, this device embodies the inventor's understanding that many of the heat problems in such a system are obviated if the light beam shape altering device would selectively deflect, instead of blocking, the undesired light.
The preferred mode of the present invention uses a digitally-controlled micromirror semiconductor device. However, any selectively-controllable multiple-reflecting element could be used for this purpose. These special optics are used to create the desired image using an array of small-sized mirrors which are movably positioned. The micromirrors are arranged in an array that will define the eventual image. The resolution of the image is limited by the size of the micromirrors: here 17 &mgr;m on a side.
The mirrors are movable between a first position in which the light is directed onto the field of a projection lens system, or a second position in which the light is deflected away from the projection lens system. The light deflected away from the lens will appear as a dark point in the resulting image on the illuminated object. The heat problem is minimized according to the present invention since the micromirrors reflect the unwanted light rather than absorbing it. The absorbed heat is caused by the quantum imperfections of the mirror and any gaps between the mirrors.
SUMMARY
The disclosed mode uses a light splitting element to split the light into its primary colors, preferably red, green, and blue, or cyan, magenta, yellow. Each of the primary colors are coupled to a separate digital micromirror device. Each device reflects only desired pixels of the light representing the primary colors. Hence, this operates to form shaped beams of colored lights in any desired colors, to be projected. The primary colors are then re-combined and projected.
Since there is no separate color altering element in the path of the device, the light output from the device can be less attenuated than the prior art.
REFERENCES:
patent: 5583688 (1996-12-01), Hornbeck
patent: 5828485 (1998-10-01), Hewlett
Dang Hung Xuan
Fish & Richardson P.C.
Light and Sound Design Ltd.
LandOfFree
Programmable light beam shape altering device using separate... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Programmable light beam shape altering device using separate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Programmable light beam shape altering device using separate... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2489513