Programmable atmospheric sampling systems and methods

Measuring and testing – Sampler – sample handling – etc. – Automatic control

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Utility Patent

active

06167766

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to systems and methods for sampling flow streams and, more particularly, to programmable sampling systems and methods for use in environmental or process monitoring.
BACKGROUND OF THE INVENTION
For various reasons, industries are often required to monitor air and water based pollutant emissions. For instance, industries must monitor their emissions to ensure the releases fall within acceptable limits specified by Federal, state, and local entities. In addition to compliance concerns, industries often desire to monitor emissions to ensure optimum process efficiency is achieved. Additionally Federal, state, and local entities often monitor air quality for general regions to ensure public health is not endangered. In all of the cases, it is often necessary or desirable to acquire samples, as opposed to real-time monitoring through active sensors, for subsequent analysis.
In general, conventional sampling systems are designed for process or emission specific monitoring applications. The conventional systems are tailored to the specific effluent to be monitored in terms of sample collection design, pumping system and flow regulation design, and peripheral sensor measurements. In cases where commercially manufactured equipment is not available for specific sampling applications, the user must design specific sampling equipment unique to the user's needs.
Conventional sampling systems have numerous disadvantages. Some of the disadvantages of conventional systems are that they have fixed flow systems with limited operating ranges, have limited or no sensor acquisition ability, have limited or no data retention, have limited or no sequential sampling capability, are designed to operate a single flow system as opposed to multiple flow systems concurrently, are unable or have limited ability to recover from power failures and loss of flow conditions, and are unable to sample diverse media, such as water and air media, stack or ambient conditions. With conventional sampling systems, the user must purchase a specific sampler for each sampling need or configure a sampler from available materials. The operating conditions of the conventional sampling system is typically fixed and cannot be altered. Additionally, when conventional sampling devices are used in hazardous areas, the entire sampling apparatus often can not easily be reused due to contamination of the equipment and the inability to remove contaminated components. With conventional sampling equipment, the entire equipment must periodically be removed from service in order to recalibrate the key components, such as a flow regulation mechanism.
A need therefore exists for systems or methods which can easily be adapted to the sampling of stack effluents, ambient air, or water. A need also exists for systems or methods of sampling that will allow for efficient exchange of the pumping and flow regulation media.
An example of a conventional sampling system is comprised of seven collection canister modules (CCMs) with one being used for each day of a week. Each CCM includes a solenoid to enable gas flow to the associated chamber and an asorbate material in the chamber for acquiring a material of interest. Each CCM has a pump for extracting process gas and for drawing the gas through the CCM where the asorbate material would acquire the material. A control unit having a timer would cycle through the CCMs so that each chamber in the CCM acquired a sample for a twenty four hour period.
The conventional sampling system has numerous disadvantages. The flow rate through the CCM is an assumed rate and the pump is only calibrated at periodic intervals. Since the flow rates into the chambers are not exact, the samples acquired in the CCMs do not accurately represent the actual flows through the facility. As a result, the actual amount of a pollutant or other material may actually be higher or lower than that estimated through the sampling. Without accurate information, the process occurring within the facility may not operate at an optimal level or the facility may be forced to take unnecessary costly measures to combat the emission of the detected material.
The conventional sampling system is generally unable to recover from an error or failure. For instance, if the pump fails, the control unit having the timer cycles through the remaining CCM chambers thereby rendering all of the collected samples invalid. Thus, data for an entire week may be totally worthless simply because of a single event. It is therefore a problem in the industry to obtain samples in a reliable manner.
The conventional sampling system is also rather rigid and inflexible. The flow rates through the chambers and the interval at which the control unit cycles through the chambers are fixed. If a change is desired in either the flow rate or the interval at which the chambers are cycled, the system must be rewired or the electronics in the system must be replaced. It is therefore rather difficult to adapt the conventional sampling system to a new flow rate or cycle interval. Further, the conventional sampling system is configured for a specific process and must be reconfigured if used outside of that process.
A need therefore exists for systems or methods of sampling effluents which can respond to emergency situations to ensure the integrity of samples. A need also exists for systems or methods of sampling which can be easily changed to have a different sampling rate or a different sampling interval. A need further exists for systems or methods for sampling which are not permanently attached to one facility but which can be transported to another facility.
SUMMARY OF THE INVENTION
A sampling system according to one aspect of the invention has a flow rate which may be programmed by the user. The sampling system includes an interface for receiving the programmed rate and a central processor for receiving the rate. A flow controller has its flow rate set by the central processor and control a pump so that it passes fluid into a sampling chamber at the programmed rate. The sampling system preferably monitors fluid flow through a process so that the flow through the sampling chamber can be adjusted to equal a desired rate. The sampling system may receive the programmed rate directly from a keypad or keyboard connected to the central processor or from an external computer. This external computer, moreover, may be interfaced directly with the sampling system or the sampling system may have a modem for communicating with a remote computer.
The sampling system may have a plurality of sensor inputs. One of these inputs, as discussed above, may be used to detect a rate at which a process fluid is flowing and another one of these inputs is preferably used to detect a temperature of the sampling system. Other inputs may be used to calibrate the sampling system, to receive weather data, or to receive position information.
The sampling system is preferably used with a collection canister module (CCM) having a plurality of sampling chambers. Each sampling chamber in the CCM has an associated solenoid valve for controlling fluid flow through the sampling chamber. The sampling system has a set of relays and at least one relay controller for activating the solenoid valves so that the sampling chambers obtain samples at desired times and in a desired order. The sampling system is not limited to just one CCM but instead may be coupled to two or more CCMs. The set of relays and relay controller are also used by the sampling system to control the sequencing of the CCMs.
The flow controller in the sampling system is preferably a removable flow assembly. The flow controller is mounted along with a pump on a mounting member which has guides for permitting the flow controller assembly to be easily inserted and removed from the sampling system. The flow controller assembly furthermore has a set of flow connectors for allowing quick connect and disconnect to the CCMs and a set of electrical connectors for coupling the flow controller and pump to t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Programmable atmospheric sampling systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Programmable atmospheric sampling systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Programmable atmospheric sampling systems and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2449554

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.