Program creating method for uniform-shape machining

Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

31856823, 3185681, 36447429, 36447436, G06F 1500, G05B 19403

Patent

active

057739501

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to a method for creating a program for machining by a machine tool, robot, etc., and more particularly, to a machining program creating method for uniform-shape machining at a plurality of positions on the circumference of one circle around a certain position.


DESCRIPTION OF THE RELATED ART

In a method of effecting uniform-shape machining at a plurality of positions by a CNC machine tool, robot, etc., a specific machining program for machining to one shape at one position is shifted to another position, whereby a machining program for uniform-shape machining for the shifted position is obtained. This method is executed by utilizing a parallel shift function and parallel rotational shift function which are provided for a CNC device or robot control device of a control system for the machine tool.
Out of these functions, the parallel shift function is used to obtain a new machining program by causing position data in the machining program to move parallel, while the parallel rotational shift function is used to obtain the new machining program by causing the position data in the program to move parallel and also to rotate. In either of these methods, specifying of the conversion quantity would require setting or teaching of an optional representative point for the machining shape.
More specifically, according to the method based on the parallel shift function, the position of an optional point on the machining shape before the movement is taught as a representative point by a teaching device; the direction and extent of the parallel movement for the machining shape is also taught by teaching the position of destination, and all the position data in the machining program are moved parallel for the set extent in the set direction.
According to the method based on the parallel rotational shift function, on the other hand, the direction of movement, extent of movement, and extent of rotation can be taught by teaching the positions of six points in total, including three optional points on the machining shape before the movement and three corresponding points after the movement, and the new machining program for new shape is obtained by causing all the position data in the program to move parallel and rotate.
Moreover, the parallel shift function may provide a method in which the conversion quantity is set numerically, besides the aforesaid method in which one point before the movement and another point after the movement, two points in total, are taught. According to this method, extents of movement in the X-, Y-, Z-axis directions are set numerically, and the new machining program effected by parallel movement is obtained by moving all the position data in the program for those extents of movement.
For example, if there are a plurality of positions for uniform-shape machining on the circumference of one circle, as in the case of machining holes in tire wheels of an automobile, the operating efficiency can be improved, where a machining program for one optional position is first prepared, and the machining programs for the rest of machining positions are created by shifting the machining positions of the first prepared program by predetermined distances respectively.
As mentioned before, however, the conventionally available program shift functions are only the parallel shift and parallel rotational shift functions. According to the example described above, moreover, the conversion involves rotational movement, so that the parallel shift function is not applicable, that is, only the parallel rotational shift function can be utilized. However, this parallel rotational shift function is not provided with a function for numerically setting the converted extent of movement. As mentioned before, therefore, this method can only be employed by setting the three points before the movement and setting the three points after the movement. Thus, if there are so many positions for machining that the frequency of shifting is increased, the number of points to be set in

REFERENCES:
patent: 4384333 (1983-05-01), Maecker
patent: 4423481 (1983-12-01), Reid-Green et al.
patent: 4736325 (1988-04-01), Nagae et al.
patent: 5216344 (1993-06-01), Sasaki et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Program creating method for uniform-shape machining does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Program creating method for uniform-shape machining, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Program creating method for uniform-shape machining will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1863500

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.