Production of sodium borohydride from sodium borohydride...

Chemistry of inorganic compounds – Boron or compound thereof – Hydrogen and metal or ammonium containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S188260

Reexamination Certificate

active

06231825

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Sodium borohydride (NaBH
4
) is a commercial product used as a source of hydrogen, as a reducing agent and as a blowing agent for plastics. It has been produced from the reaction of sodium hydride and trimethyl borate, as described by Schlesinger in U.S. Pat. No. 2,534,533. This reaction can result in an aqueous solution from which it is necessary to first extract the sodium borohydride with a solvent, such as isopropylamine, and then separate the borohydride product from the extraction solvent. As described in U.S. Pat. No. 3,795,491 to Winiarczyk, the borohydride product can be separated from the solvent and recovered as crystals of sodium borohydride dihydrate (NaBH
4
.2H
2
O). The sodium borohydride dihydrate is then dried to remove the water of hydration and form pure solid sodium borohydride. This invention is directed to a new and improved method of drying the sodium borohydride dihydrate to remove the water of hydration therefrom and the unique sodium borohydride product thereby produced.
2. Description of Related Art
Previously, drying of the sodium borohydride dihydrate has been accomplished by controlled heating of the particles, or crystals, under vacuum. The wet particles are loaded as a batch in rotary vacuum dryers having double helical coil ribbon agitators. The dryers are evacuated to a relatively high vacuum and the particles heated by heat transfer through the agitator shaft and dryer jacket. Once the moisture content of the charge is within the desired specification, the borohydride is cooled by extracting heat through the heat transfer surfaces, and the cooled product is then removed from the dryer.
The dried borohydride is a dusty, fine powder which is very hygroscopic and prone to agglomeration. Upon its removal from the dryer, the immediate addition of an anti-caking or flow agent, typically 0.5% by weight of silica or magnesium carbonate, or the immediate mechanical compaction to a compacted product form, is necessary to prevent severe agglomeration. The need to include such additives reduces the purity of the product. Both the reduced product purity and the compacted product form can detrimentally reduce the product's solubility and reactivity.
The prior process is hampered by the difficulty of maintaining a large leak-tight vacuum system with its associated large vacuum sources, and the possibility of massive air intrusion resulting in unsatisfactory product quality. Additional product quality deficiencies result from the inconsistencies typically encountered in batch processing. The agglomerating tendency and dusty nature of the product requires special handling and/or additives which impact on the manufacturing costs and can impact on the product's desired chemical activity. Moreover, since the affiliated processing steps upstream and downstream of the subject drying step are operated as continuous processes, the operation of the drying step as a batch process requires scheduling and storage support which would not be required if it could be operated as a continuous process.
There is a need for a drying technique which alleviates the above noted problems. It is an objective of the inventive process to provide a drying technique which avoids the maintenance and mechanical requirements of a large capacity vacuum system. A further objective is the provision of a drying technique which is capable of continuous operation.
Further objectives of the present invention include providing a dried sodium borohydride product which is not as dusty, or fine, as the vacuum-dried product; and providing a dried product which is free flowing without the need for either an anti-caking/flow agent additive or for immediate compacting.
SUMMARY OF THE INVENTION
The invention is directed to the drying of sodium borohydride dihydrate particles in a rapidly flowing stream of a low moisture content, chemically-inert drying gas. The drying gas may be selected from recognized inert gases which are non-reactive with the borohydride, such as helium, argon or nitrogen. The water content of the flowing stream is maintained at a sufficiently low level to assure that the water of hydration is removed from the dihydrate. The flowing stream may be heated to a temperature which facilitates vaporization and removal of the water of hydration, but is below the temperature at which the particles it contacts melt or become chemically unstable. Preferably, the flowing drying gas stream has progressively higher temperatures as it contacts borohydride particles with progressively lower water contents. The stream of gas may flow at a sufficient velocity to suspend the borohydride particles as a fluidized bed in an upwardly flowing stream of the drying gas. Alternatively, the borohydride particles can be suspended in, and flow with, the flowing stream of the drying gas over an elongated flow path. Once the water of hydration has been removed, the borohydride particles are recovered from the flowing stream. Preferably, the drying gas is then recycled after being dehydrated and temperature conditioned. While the process may be conducted as a batch process, it is preferred that it be operated as a continuous process.
The invention is also directed to the solid sodium borohydride product produced by the new inventive process. This product is in the form of a mixture of non-agglomerating highly reactive, readily dissolved solid particles, which mixture is free flowing without the need for anti-caking or flow agents, is relatively odor-free and dust-free, with a bulk density between 20 and 28 pounds per cubic foot, and wherein the particles are generally larger than the particles produced by the previous vacuum drying process. Generally, the product comprises a mixture of particles wherein at least 80% by weight of the total particles pass a 10 mesh screen and are retained on a 60 mesh screen.


REFERENCES:
patent: 2963405 (1960-12-01), Seemuller
patent: 3795491 (1974-03-01), Winiarczyk
patent: 4360623 (1982-11-01), Wade et al.
patent: 4670417 (1987-06-01), Iwasaki et al.
patent: 5136070 (1992-08-01), Bank
patent: 5182046 (1993-01-01), Patton et al.
patent: 5942614 (1999-08-01), Huber
patent: 1 186 050 (1970-04-01), None
patent: 2 417 470 (1979-09-01), None
Perry et al, “Chemical Engineers' Handbook”, Fifth Edition, TP 155 P4 pp. 20-1 thru 20-20, 20-30 thru 20-47 and 20-64 thru 20-74, (no month).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production of sodium borohydride from sodium borohydride... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production of sodium borohydride from sodium borohydride..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of sodium borohydride from sodium borohydride... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567266

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.