Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Using tissue cell culture to make a protein or polypeptide
Reexamination Certificate
2000-09-11
2002-07-02
Park, Hankyel T. (Department: 1648)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Using tissue cell culture to make a protein or polypeptide
C435S069200, C435S346000, C530S380000
Reexamination Certificate
active
06413746
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for the production of a protein by cell culture, where cells which produce the protein are cultured in the presence of a chemical agent which enhances production of the protein.
BACKGROUND TO THE INVENTION
Culturing cells for the commercial production of cellular products for diagnosis and therapy is a costly and time consuming process. The equipment required is expensive and research and development and production costs are high. In order to provide commercially viable processes it is desirable to use cell lines which produce large quantities of product.
Many naturally occurring cells do not produce large quantities of desired proteins, though may produce small quantities of the desired proteins constitutively, i.e. synthesise the proteins continuously. Other cell lines do not produce proteins of interest constitutively but it is well known that such cell lines may be induced to produce proteins of interest, i.e. these cell lines have the potential to produce particular proteins and when given an appropriate stimulus will produce these proteins (Kruh, J., Mol. and Cell. Biol. 42, 65-82, 1982). Induction of protein production may be achieved by addition of a chemical compound, such as dimethylsulphoxide (DMSO) to the culture medium, or an infecting agent such as Sendai virus to the cells.
A number of compounds are known which are able to act as ‘inducing agents’, ‘enhancing agents’ or ‘stimulating agents’ of protein production in cell lines. For the purposes of the present description the above terms have the following meanings based on the apparent effects which they cause. ‘Inducing agent’ refers to agents which apparently act to induce or initiate protein production. ‘Enhancing agent’ refers to agents which apparently act to increase, but may not initiate or induce, protein production. Enhancing agents may be added to the cell culture at or shortly after induction cell lines or at any time for cell lines which constitutively produce desired proteins. ‘Stimulating agent’ refers to agents which are added to cultures of inducible cell lines, usually after the cells have reached a desired cell density but before induction of protein production, and apparently act as part of a ‘trigger’ mechanism for subsequent induction of protein production, by an inducing agent.
The choice of agent, whether it be an inducing agent, enhancing agent or stimulating agent, depends on such factors as cell type, final concentration of the added agent in the medium, time of addition, period of exposure to the agent and toxicity. Many additives have been used, such as DMSO, urea derivatives and alkanoic acids or salts. From amongst such additives, sodium butyrate has been the subject of study in recent years. This compound has been added, at millimolar concentrations, to cultures of a variety of naturally occurring and selected cell lines and has been shown to produce many morphological and biochemical modifications in a reversible manner (Kruh, J., loc. cit.). At the molecular level, butyrate is believed to cause hypezacetylations of histones by inhibiting histone deacetylase. Generally, butyrate appears to modify gene expression and in almost all cases its addition to cells in culture appears to arrest cell growth.
For example, sodium butyrate (1 mM) has been used to induce human choriogonadotropin synthesis in HeLa-cell cultures (Ghosh et al, Biochem. J. (1977) 166 265-274; and Cox & McClure, In Vitro, Vol. 19, No. 1. January 1983, 1-6); though in both cases butyrate treatment inhibited cell growth. Also UK patent specification 2122207A describes the use of butyrate as a stimulating agent prior to induction of interferon synthesis with Sendai virus in a lymphoblastoid cell line. However, UK 2122207A further teaches, in the case of the particular cell line described, that butyrate could not be used as an enhancing agent of interferon synthesis if added at or shortly after induction.
In addition to cell lines which require induction to produce proteins of interest in large quantities, there are other cell lines available which are capable of producing desired proteins constitutively i.e. without the need to use agents to induce protein synthesis (Trends in Biotech. 3, No. 12 (1985), J. Imuno. Meth. 56, 221-234 1983). Such cell lines include genetically manipulated cell lines and hybridoma cell lines. By use of selected genetically manipulated and hybridoma cell lines it has become possible to manufacture large quantities of ‘rare’ proteins, without the need to use inducing agents.
The effect of adding butyrate, a recognised inducer of protein production in several mammalian cell lines, has been studied for cultures of certain genetically manipulated cell lines. For example, cultures of Syrian hamster cells which were microinjected or transfected with a plasmid containing the entire SV40 genome and a gene coding for herpes simplex virus thymidine kinase (HSV-TK) (Yuan et al J. Biol. Chem. 260, 3778-3783, 1985) have been treated with butyrate. Butyrate was added to the cell culture and butyrate concentration was maintained throughout the culture period. The level of expression of SV40 was measured by determination of the amount of SV40 T antigen produced, and the level of expression of HSV-TK was measured by the incorporation of tritiated thymidine. Yuan et al reported that butyrate at concentrations ranging from 1 mM to 5 mM inhibited the expression of both genes as compared with control values.
Further, other workers (Gorman, C. M. et al, Nucleic Acids Research, 11, 7631-7648, 1983) have studied the effects of sodium butyrate on DNA-mediated gene transfer in an effort to investigate interrelationships between chromatin structure and expression of recombinant plasmids. In both transient expression and stable transformation experiments cells were treated with butyrate immediately following transfection with plasmids containing foreign DNA. In the case of stable transformants cells were also subjected to a second butyrate treatment five weeks after the initial butyrate treatment which immediately followed transfection. Their results indicate that butyrate affects the early stages of gene activity at least at two levels: increasing both the proportion of cells which are able to express foreign DNA and the level of enhancer dependent transcription. Further the results of their experiments with stable transformants indicate that expression of integrated recombinant plasmid genes is reinducible by subsequent butyrate treatment when the cells had been initially treated with butyrate immediately following DNA uptake. No appreciable induction of foreign gene expression was observed with cells which had not been subjected to an initial butyrate treatment immediately following transfection. These results suggest that the initial butyrate treatment predisposes expression of the integrated foreign DNA to subsequent butyrate induction.
In summary butyrate has been added to cultures of a number of natural and genetically manipulated cell lines, generally appearing to initiate or inhibit gene expression and arrest cell growth. In the case of genetically manipulated cells, prolonged butyrate treatment appears to inhibit expression of foreign genes (Yuan et al. loc. cit.). In the specific instance when cells had been treated with butyrate immediately following transfection, subsequent butyrate treatment appears to reinduce expression of the foreign genes (Gorman et al, loc. cit.). The effect of butyrate treatment on the growth and immunoglobulin production of hybridoma cell cultures does not appear to have been investigated.
We have nose found that chemical agents, such as butyrate, may be used to enhance protein production in cultures of genetically manipulated and hybridoma cell lines which are constitutive producers of the protein provided that appropriate concentrations of the agent are added to the culture medium. We have found, in the case of genetically manipulated cells, that initial treatment with an agent, such as butyrate, immediately following tra
Lonza Group, AG
Park Hankyel T.
Schneller Marina V.
Venable
LandOfFree
Production of proteins by cell culture does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Production of proteins by cell culture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of proteins by cell culture will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2832983