Refrigeration – With means preventing or handling atmospheric condensate... – Retainer or flow director for atmospheric condensate
Reexamination Certificate
2001-03-19
2003-06-10
Jiang, Chen-Wen (Department: 3744)
Refrigeration
With means preventing or handling atmospheric condensate...
Retainer or flow director for atmospheric condensate
C062S291000, C062S093000
Reexamination Certificate
active
06574979
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates generally to harvesting freshwater from atmospheric humidity in regions suffering from freshwater shortage compounded with extended periods of extremely high temperature and very high humidity to supply potable water as well as freshwater for other human uses, irrigation, and animal and poultry farms and to alleviate the heat loading for buildings. The invention also relates to collection of water from moisture rich gases in situations of emergency and when trusted freshwater is lacking.
SUMMARY OF THE INVENTION
Extreme heat in tropical regions is usually accompanied by extremes of high humidity, especially at low altitude where bayous, marshlands, swamps, shallow lakes, heavy vegetations, and forests are abundant; tropical islands, such as the Caribbean Islands; arid land and deserts nearby ocean shorelines or seashores; such as the regions in the Arabian Peninsula near the Red Sea and the Gulf. The absolute humidity in regions by and near the shores of oceans and seas could reach up to twenty-five (25) grams of water per cubic meter of air.
Generally, natural freshwater resources are scarce or limited in very hot and humid deserts and arid lands due to low precipitation and high salinity of surface and underground water. Heat strokes are also common in areas where there is no shade and building material does not provide proper protection from brunt of the harsh climate. Rural and nomadic life conditions are deteriorating due to environmental changes caused by expanding developments elsewhere.
Shortage in supply of potable water and freshwater is increasing at a vast rate, as deserts expand and overtake fertile land and as many of the natural ground water-resources are being depleted. Shift in patterns of the global climate throughout time resulted in a drop in the rate of rainfall in many areas. Hunger and starvation is spreading in Africa because of shortage of freshwater to raise domestic animals and crops for food.
Sparse population and scattered population pockets in many areas make the application of water desalination and treatment technologies uneconomical due to the low demand and the high cost of water distribution from a central system over a wide stretch of land. Transportation of loads of freshwater is costly and exposes water to contamination en route and during handling and storage.
Accordingly, there is a need for localized production of fresh water to provide water for human drinking and freshwater for raising animals and for irrigation as well as other human uses. There is also need for means to alleviate the heating load of dwellings for human and animal.
In addition, atmospheric moisture is an excellent natural source of water regardless of the amount of water vapor content of the air. The lower layer of the atmosphere surrounding the earth contains over three trillion (3×10
12
) cubic meter of renewable water, which is about one-thousandth (0.001) of the water stored on the surface of the earth. In comparison, the daily drinking water consumption of the earth population is about two hundred twelve million cubic meter (2.12×10
8
), which is a very modest portion of the water entrapped in the atmosphere. That is, free atmospheric water accessible to all mankind on the earth can satisfy all drinking water needs anywhere and anytime with a lot to spare for irrigation and raising farm animals. The atmospheric moisture reserve will not be depleted by excessive extraction of water since the water vapor is continuously replenished by evaporation of surface water and the surface of the mountains and valleys due to the flow of hot air.
Accordingly, there is a need for systems to harvest moisture entrapped in ambient air for provision of potable water for human and freshwater for agricultural uses including rearing of animal farms for food.
Additionally, many resorts and vacationing places are located in hot humid regions deprived from drinking water and freshwater since they are on spreads of arid lands by shorelines wherein groundwater is brackish and rainfall is rare. In spite of the popularity of those areas, construction of desalination plants to produce freshwater for tourists is not economically viable due to the briefness of the tourism seasons and decline of demand most of the year. Reliance on bottled water is expensive for the average consumer while this source will not provide freshwater for other uses.
Accordingly, there is a need for systems for local water production from atmospheric humidity to supply fresh water to cabins, camping areas and tourist areas during tourism seasons in regions characterized by humid hot weather throughout the busy seasons. Systems compatible with tourist regions should reduce expenditure on drinking water and provide excess water for other human uses as long as the weather conditions are appropriate.
Travel across arid lands and deserts exposes travelers to shortage of water, or lack of trusted sources of water. Loading sufficient potable water on land vehicles could be cumbersome and may be impossible in some situations. Similarly, passengers on recreation boats or seagoing ships can be exposed to the risk of water shortages during their excursions.
Accordingly, there is a need for portable freshwater producing systems that can supply freshwater and potable water on land vehicles and seagoing vehicles, utilizing available water resources, such as atmospheric humidity and moisture-laden exhaust gases from internal combustion engines.
Installing large freshwater tanks over land vehicles for long trips across vast stretches of desert is impractical. Similarly, carrying sufficient freshwater supply or installation of desalination units or water reuse units aboard large seagoing boats reduces cargo space and minimizes the benefit from surface areas on the boat and increases the load.
Accordingly, there is a need for lightweight and freshwater producing systems characterized by small footprints that can supply freshwater and potable water on large land vehicles and seagoing ships.
In situations of emergency, water supply systems may be contaminated or interrupted by natural disasters or man made catastrophes and shortage of clean freshwater and potable water can lead to spread of diseases.
Accordingly, there is a need for mobile and portable water production equipment that can supply non-contaminated freshwater and potable water for a small or larger group of people on temporary basis until the main supply of water resumes operation.
Thermoacoustic refrigeration engines have been developed and are in use in the US National Laboratories, the US Department of Energy and the National Institute of Science and Technology, the US Department of Commerce. The machines are currently used for crycooling in special experiments.
In recent years concerns with the ozone depletion and global warming problems have become additional focal points of the Heating Ventilation Air Conditioning and Refrigeration (HVAC&R) research programs. Approximately one-third of the chlorofluorocarbons (CFCs) consumed in the U.S. are us refrigeration and air-conditioning. CFCs are considered a major factor in ozone depletion and global warming problems. The changeover from CFCs to alternative refrigerants impacts equipment design and have a significant impact on energy use.
In the latest development in refrigeration, high-intensity sound waves are used to create superhot gas molecules. The gas molecules transfer their heat to inert coils and then expand and cool; effectively creating a refrigerator that can be adjusted by a volume-control knob. Advantages over conventional refrigerators include the elimination of ozone-destroying gases, reduction of components to a single moving part, and the ability to precisely control the cooling cycle. Thermoacoustic cooling has been used in space shuttles, and it remains a future hope for automobile air conditioners and refrigerators in homes and boats. Accordingly, intensive efforts are expended in application of such capabilities in deve
Fakieh Research & Development
Jiang Chen-Wen
Nixon & Peabody LLP
Studebaker Donald R.
LandOfFree
Production of potable water and freshwater needs for human,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Production of potable water and freshwater needs for human,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of potable water and freshwater needs for human,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3139338