Production of materials rich in conjugated isomers of long...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06271404

ABSTRACT:

Materials comprising mainly (mainly meaning more than 40% preferably more than 60%) conjugated isomers of long chain polyunsaturated fatty acids are known for their health performance, when applied in food products. In general these products comprise the linoleic acid isomers and from all the different linoleic acid isomers possible the cis 9 trans 11 and trans 10 cis 12 isomers are most often the most abundantly present in these materials, in general in a 1:1 weight ratio.
These products with high contents of different conjugated isomers of the same long chain polyunsaturated fatty acid are useful starting materials for the preparation of materials with other ratio's of the different conjugated isomers of the long chain polyunsaturated fatty acids. Such a process could enable us to prepare products with a limited number of isomers and with very high ratio's of the different isomers of the conjugated polyunsaturated acids. Therefore such a process could enable us to take advantage of the different properties of the different isomers for different purposes.
A process to enrich the mix containing the different conjugated isomers of the same long chain polyunsaturated fatty acid in one of the isomers is the subject of our earlier WO patent application WO 97/18320.
The prior art processes for the preparation of above starting materials rich in conjugated polyunsaturated long chain fatty acids have however a number of drawbacks.
According to a first prior art method this material can be made by a process wherein water has to be used as solvent at high pressures and rather high temperatures, resulting in a product wherein far too many isomers of the polyunsaturated fatty acid are present.
This means that the product per se, but also the product as a starting material for the enrichment contains too many components. Therefore the product per se is less useful as food ingredient, while also the products obtained after the enrichment process are rather contaminated.
Alternatively the prior art (EP799033) discloses a process, wherein an organic solvent in this case ethylene glycol has to be used. Ethylene glycol however has one main drawback, ie it is not foodgrade and it is very difficult to remove it completely from the reaction product of the isomerisation process.
This means that the product per se, but also later products made from it like the enrichment products, are not food grade either.
Moreover the yields of desired conjugated polyunsaturated isomers in the reaction product of the conversion in the presence of base are rather low in that instance.
According to an example 1 of a non-prepublished PCT-application with an earlier priority date (WO97/46230) conjugated linoleic acids can be obtained by isomeration of linoleic acid or safflower oil by subjecting the starting material to base (KOH) in propylene glycol at 180° C. for 20 minutes. When we performed this process, we found that the reaction product contained relatively large amounts of other isomers, than the desired conjugated linoleic isomers as well. This probably is due to the severe reaction, conditions applied.
According to another non-published patent application with an earlier priority date (EP 839897) conjugated linoleic acids can be obtained by subjecting fats, containing linoleic acid to base in propylene glycol. Hower high ratios of base to solvent (6 mole/l) are applied. Moreover the use of fats as starting material has the disadvantage over using free fatty acid as staring material, that a build-up of glycerol in the solvent occurs, when the solvent is recycled in the reactionsystem.
We found a solution for the above problems that even had another big unexpected advantage. We found that with our new process not only the yields were higher at lower temperatures, while the use of a non-foodgrade solvent could be avoided, but we also found surprisingly that the number of isomers formed was less and that the isomers formed by a subsequent enzymic enrichment process could be separated easier than when ethylene glycol was used as a solvent.
Therefore our invention concerns in the first instance a process for the preparation of materials comprising mainly conjugated isomers of long chain polyunsaturated fatty acids wherein an oil or a free fatty acid composition or an alkyl ester composition thereof, containing at least 25 wt % of at least one isomer other than the conjugated isomers of long chain polyunsaturated fatty acids is subjected to a treatment with a base in a solvent and wherein the solvent is an alcohol with at least 3 C-atoms and at least two hydroxy groups having:
a ratio of number of C-atoms: number of OH groups of at least 1.25 but less than 3.5, preferably from 1.5 to 2.75, while the reaction is carried out between 100 and 180° C., more preferably between 120 and 180° C. This temperature range thus does not include 180° C. per se.
A very suitable solvent is 1.3 dihydroxypropane or 1,2 dihydroxypropane. These solvents are foodgrade so that traces left in the products are not harmful.
The reaction is preferably performed in the absence of glycerol. Herefore free fatty acids are preferably used as starting material.
The base could be any base but we found that the best results were obtained with NaOH or KOH as base. Suitable concentrations for the base are greater than 0.25 mole/l of solvent, preferably 0.25-3.5 most preferably 1.25-2.75 mole/l. Using higher amounts of base leads to the formation of products, wherein many isomers (in particular C
18:2
trans/trans-isomers) are present (cf our comparative example)
The starting materials for our novel process have to contain at least 25 wt % of at least one isomer other than the conjugated isomers of long chain polyunsaturated fatty acids. This amount preferably is more than 40 wt %, more preferably even more than 60 wt %. The long chain polyunsaturated fatty acids preferably have at least two unsaturations and at least 18 C-atoms. The most preferred polyunsaturated long chain fatty acids are the different linoleic and linolenic acid isomers. Linoleic acid eg contains mainly the cis 9 cis 12 diunsaturated carbon chain, while in the different natural occurring linolenic acids the three double bonds are all cis but occur at different positions (non-conjugated) in the carbon chain.
Very suitable starting materials are selected from the group consisting of: sunflower oil, rape seed oil, soybean oil, safflower oil, linseed oil(=high in C
18:3
) and in particular the free acids derived from these oils and alkylesters from these free acids. These materials are rich in linoleic acid or linolenic acid, in particular C
18:2
, cis 9 cis 12.
The most preferred products of our novel process are products that contain the linoleic isomers cis 9 trans 11 and trans 10 cis 12 in about a 1:1 ratio. As disclosed in our earlier WO application 97/18320 these materials can be converted into materials wherein this ratio cis 9 trans 11: trans 10 cis 12 is changed considerably. Our products are suitably isolated from the crude reaction mixture by the addition of diluted acid to the soap formed until an acidic pH is achieved (preferably: pH 1-3), whereupon the oil is separated from the waterlayer and dried.
According to a last embodiment of our invention we claim the use of an oil, or of free fatty acids derived from this oil, or of alkyl esters from these free fatty acids comprising mainly conjugated isomers of long chain polyunsaturated fatty acids for the preparation of a material comprising mainly conjugated isomers of the long chain polyunsaturated fatty acids in another ratio for the conjugated isomers by an enzymic enrichment process using an enzyme that has the ability to discriminate between different isomers of conjugated long chain polyunsaturated fatty acids, wherein the product obtained from the process according to claims
1
-
5
is applied as starting material in the enzymic enrichment process for the production of the materials with the other ratio of conjugated isomers.


REFERENCES:
patent: 2242230 (1941-05-01), Burr
patent: 2343644 (1944-03-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production of materials rich in conjugated isomers of long... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production of materials rich in conjugated isomers of long..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of materials rich in conjugated isomers of long... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.