Production of large-area metallic integral foams

Metal founding – Process – Shaping liquid metal against a forming surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C164S428000, C164S480000

Reexamination Certificate

active

06659162

ABSTRACT:

RELATED APPLICATIONS
This application claims priority to German application no. 101 04 338.4 A filed Feb. 1, 2001, herein incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for producing metal foams and to the metal bodies in foam form which are obtained in this way.
2. Description of the Related Art
The prior art for the production of metal foams substantially comprises five basic procedures:
1. the compacting of metal powders with suitable blowing agents and heating of the preforms obtained in this way to temperatures which are higher than the liquidus temperature of the metal matrix and higher than the decomposition temperature of the blowing agent used;
2. dissolving or blowing of blowing gases into metal melts;
3. stirring of blowing agents into metal melts;
4. sintering of metallic hollow spheres;
5. infiltration of metal melts into filler bodies, which are removed after the melt has solidified.
Regarding the first procedure DE-A-197 44 300 deals with the production and use of porous light metal parts or light-metal alloy parts, the bodies which have been compressed from a powder mixture (light-metal or Al alloy and blowing agent) being heated, in a heatable, closed vessel with inlet and outlet openings, to temperatures which are higher than the decomposition temperature of the blowing agent and/or melting temperature of the metal or of the alloy.
Regarding the second procedure JP 03017236A describes a process for producing metallic articles with cavities by dissolving gases in a metal melt and then initiating the foaming operation by suddenly reducing the pressure. Cooling of the melt stabilizes the foam obtained in this way.
WO 92/21457 teaches the production of Al foam or Al alloy foam by blowing in gas beneath the surface of a molten metal, abrasives, such as for example SiC, ZrO
2
etc., being used as stabilizers.
With respect to the third procedure, according to the teaching given in JP 09241780 A, metallic foams are obtained with the controlled release of blowing gases as a result of the metals initially being melted at temperatures which lie below the decomposition temperature of the blowing agent used. Subsequent dispersion of the blowing agent in the molten metal and heating of the matrix to above the temperature which is then required to release blowing gases leads to a metal foam being formed.
Regarding the fourth procedure, the production of ultralight Ti-6Al-4V hollow sphere foams is based on the sintering, which takes place at temperatures of ≧1000° C., of hydrated Ti-6Al-4V hollow spheres at 600° C. (Synth./Process. Lightweight Met. Mater. II, Proc. Symp. 2nd (1997),289-300).
With respect to procedure 5, foamed aluminum is obtained by, after infiltration of molten aluminum into a porous filler, by removal of the filler from the solidified metal (Thuzao Bianjibu (1997) (2) 1-4; ZHUZET, ISSN: 1001-4977).
Furthermore, components with a hollow profiled section are of particular interest for reducing weight and increasing rigidity. DE-A-195 01 508 deals with a component for the chassis of a motor vehicle which comprises die-cast aluminum and has a hollow profiled section, in the interior of which there is a core of aluminum foam. The integrated aluminum foam core is produced in advance by powder metallurgy and is then fixed to the inner wall of a casting die and surrounded with metal by die-casting.
W. Thiele: Fullstoffihaltiger Aluminiumschwamm—ein kompressibler Gusswerkstoff zur Absorption von Sto&bgr;energic, [Filler-containing aluminum sponge—a compressible cast material for absorption of impact energy], in: Metall 28, 1974, Vol. 1, pp. 39 to 42, describes the production of foamed aluminum. The desired cavities are predetermined in terms of size, shape and position in the form of a loose bed of readily compressible, inorganic light materials, such as for example expanded clay minerals, expanded clay, glass foam beads or hollow corundum beads, etc. The bed of light material is introduced into a die. The spaces which remain in the bed are filled with metal. The aluminum sponge obtained in this way has relatively poor mechanical qualities and contains the material of the bed.
JP Patent Abstracts of Japan: JP 09241780 A describes the production of metallic foam bodies. In particular, metals or alloys are melted under atmospheric pressure and are mixed with a small amount of titanium hydride. Titanium hydride is uniformly distributed in the molten metal by stirring and, in a further step, the metal is cast into a die or a metal product. The molten metal in the die is heated again, to a temperature which is higher than the melting point of the metals or alloys, with the result that the foaming reaction takes place.
DE-B-11 64 103 describes a process for producing metal foam bodies. In this process, a solid material which, when heated, decomposes to form gases, is mixed with a molten metal in such a manner that the solid material is wetted by the metal. By way of example, pulverulent titanium hydride is added to a molten alloy of aluminum and magnesium at a temperature of 600° C. The closed foam formed in this way is then cast into a die, where it can cool and solidify. In this case too, it is clearly not a closed system, but rather an open system which is used.
GB-A-892 934 describes the production of complex structures with foamed metal core and continuous, nonporous surface.
DE-C 198 32 794 describes a process for producing a hollow profiled section which is filled with metal foam. This process comprises the steps of extruding the hollow profiled section from a sheathing material using an extruder which has an extrusion die with a die part and a mandrel, supplying the metal foam from a foam material to the hollow profiled section through a feed duct, which is formed in the mandrel.
JP Patent Abstracts of Japan 07145435 A describes the production of foamed metal wires. Molten aluminum is foamed in a furnace with the aid of a blowing agent and is fed to a continuous casting device. The molten aluminum in the foamed state is cooled between a pair of upper and lower conveyor belts in order to obtain an endless strand. This strand is cut into the foamed aluminum wires in a predetermined way. Alternatively, the foamed aluminum wire or the strand can be formed by drawing the foamed, molten aluminum between a wire with a groove and a conveyor belt. The molten aluminum wire is therefore obtained by rolling or drawing.
When assessing the prior art, it can be observed that the processes which provide for preliminary compacting of preforms which contain blowing agent are complex and expensive and are unsuitable for mass production. Moreover, a common feature of these processes is that the desired temperature difference between the melting point of the metal which is to be foamed and the decomposition temperature of the blowing agent used should be as low as possible, since otherwise disruptive decomposition of blowing agent takes place even during compacting or later in the melting phase. This observation applies in a similar way to the introduction of blowing agents into metal melts.
The sintering of preformed hollow spheres to form a metallic foam is at best of academic interest, since even the production of the hollow spheres requires a complex procedure.
The infiltration technique has to be considered in a similar way, since the porous filler has to be removed from the foam matrix, which is a difficult operation.
The dissolving or blowing of blowing gases into metal melts is not suitable for the production of near net shape components, since a system comprising melt with occluded gas bubbles is not stable for a sufficient time for it to be processed in shaping dies.
OBJECT OF THE INVENTION
In view of this background, it was an object of the invention to provide for a simple process which produces large-area metallic integral foams with a continuous outer skin which is suitable for mass production, allows the production of near net shape parts with little outlay and is based on the use of so

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production of large-area metallic integral foams does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production of large-area metallic integral foams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of large-area metallic integral foams will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117983

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.