Production methods of 1,1,1,4,4,4-hexsfluoro-2-butene compounds

Organic compounds -- part of the class 532-570 series – Organic compounds – Halogen containing

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

570153, C07C 17013, C07C 1908, C07C 2104, C07C 2118

Patent

active

056081286

DESCRIPTION:

BRIEF SUMMARY
This application is a 371 of PCT/JP94/00068 filed Jan. 19, 1994.


INDUSTRIAL APPLICATION

The present invention relates to production methods of 1,1,1,4,4,4-hexafluorobutane, which is a compound useful for a blowing agent, cleaning agent or heating medium as an alternative to HCFC; and 1,1,1,4,4,4-hexfluoro-2-butene compounds including 1,1,1,4,4,4hexafluoro-2,3-dichloro-2-butene, 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene and 1,1,1,4,4,4-hexafluoro-2-butene, which are obtained as reaction intermediates in the production method of 1,1,1,4,4,4-hexafluorobutane and can be used as industrial intermediate chemicals for medicine and agricultural chemicals.


PRIOR ART

It is well known that 1,1,1,4,4,4-hexafluoro-2,3-dichloro-2-butene can be synthesized by chlorinating and fluorinating hexachlorobutadiene (U.S. Pat. No. 3149170). It is also well known that 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene is produced by fluorinating hexachloro-1,3-butadiene with HF in the presence of antimony halide (Japanese Patent Opening No.50830/89).
In the known methods, however, hexachlorobutadiene used as a material is so expensive that there may be difficulties in procuring the raw material in bulk.


OBJECTIVES OF THE INVENTION

The objectives of the present invention are to provide a less costly industrial production method of 1,1,1,4,4,4-hexafluoro-2,3-dichloro-2-butene, 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene and 1,1,1,4,4,4-hexafluoro-2butene, and also to provide a less costly industrial production method of 1,1,1,4,4,4-hexafluorobutane through a reduction of those compounds.


CONSTITUENTS OF THE INVENTIONS

As a result of thorough study to establish an industrially useful and inexpensive production method of 1,1,1,4,4,4-hexafluoro-2,3-dichloro-2-butene, 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene and 1,1,1,4,4,4-hexafluoro-2butene, and also to establish a production method of 1,1,1,4,4,4-hexafluorobutane from those mixtures, the inventors have found that a mixture of 1,1,1,4,4,4-hexafluoro-2,3-dichloro-2-butene, 1,1,1,4,4,4-hexafluoro-2-chloro-2-butene and 1,1,1,4,4,4-hexafluoro-2-butene (1,1,1,4,4,4-hexafluoro-2-butene compounds), which are objective substances, is produced in a single step process at a high yield by reacting at least one of butane, butene and butadiene, which are easily procured at low prices, with chlorine and HF in the presence of a proper catalyst, and also that 1,1,1,4,4,-hexafluorobutane is obtained at a higher selectivity rate by reducing those products in the presence of a noble metal catalyst. As a result, the inventors have completed the present invention.
In the methods of the present invention, butane, butene and butadiene can be used each alone or together as a mixture for a material. Partially chlorinated and/or fluorinated butane, butadiene and 2-butene as reaction intermediates can be used by separating from reaction products. It is also possible to synthesize chlorinated and/or fluorinated butane, butadiene and 2-butene by a different method to use for the reaction.
For the catalyst in the reaction, a metal fluoride and/or metal oxyfluoride produced by fluorinating with HF the oxide of a metal (e.g., chromium) deposited from a metal salt solution by means of an alkali can be used. For the metal salt, hydrochloride or nitrate can be used. For the alkali, ammonia, urea or metal hydroxides can be used.
For the metal, one or mixed two or more of aluminum, chromium, manganese, nickel, cobalt, iron and zinc can be used. A metal fluoride obtained by fluorinating one of the halides of said metals and/or the metal oxyfluoride obtained by oxidizing said metal fluoride can be used too.
That metal fluoride can be used alone or as held in a proper carrier. The only condition for such a carrier is that it does not affect the catalytic activity in the process of the methods. Examples of such a carrier are active carbon and aluminum fluoride.
The reaction temperature can be in the range of 250.degree. C. to 450.degree. C., but lower temperatures are not practical because the reaction is slow at such a tempe

REFERENCES:
patent: 4081487 (1978-03-01), Anello et al.
patent: 4110406 (1978-08-01), Anello et al.
patent: 4902839 (1990-02-01), Bielefeldt et al.
patent: 5364991 (1994-11-01), Seki et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production methods of 1,1,1,4,4,4-hexsfluoro-2-butene compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production methods of 1,1,1,4,4,4-hexsfluoro-2-butene compounds , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production methods of 1,1,1,4,4,4-hexsfluoro-2-butene compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2147417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.