Production and use of a premium fuel grade petroleum coke

Mineral oils: processes and products – Chemical conversion of hydrocarbons – Cracking

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S132000, C044S530000, C044S607000

Utility Patent

active

06168709

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the field of petroleum coking processes, and more specifically to modifications of petroleum coking processes for the production of a premium-quality, “fuel-grade” petroleum coke. This invention also relates generally to the use of this new formulation of petroleum coke for the production of energy, and more specifically to modifications in conventional, solid-fuel furnaces and environmental control systems to take optimal advantage of its unique properties.
2. Description of Prior Art
Since initial efforts to refine crude oil in the U.S. during the late 1800s, the search for an appropriate use for the heaviest fractions of crude oil (i.e. the “bottom of the barrel”) has been a perplexing problem. Initially, many refineries received little to no value from the heaviest fractions of crude oil. Some were noted to simply discard the “bottom of the barrel.” Over time, some of the heavy crude oil fractions were used in asphalt products and residual fuel oils. However, the demand for these products was not sufficient to consume increasing production.
As demand for transportation fuels (e.g. gasoline, diesel, and aviation fuels) increased in the early 1900s, thermal cracking processes were developed to convert the heavy crude oil fractions into lighter products. These refinery processes evolved into the modern coking processes that predominate the technology currently used to upgrade the heaviest fractions of the crude oil. These processes typically reduce the quantity of heavy oil fractions, but still produce unwanted by-products (e.g. petroleum coke) with marginal value.
A. Production of Petroleum Coke, Coking Processes
In general, modern coking processes employ high-severity, thermal decomposition (or “cracking”) to maximize the conversion of very heavy, low-value residuum feeds to lower boiling hydrocarbon products. Coker feedstocks typically consist of non-volatile, asphaltic and aromatic materials with “theoretical” boiling points exceeding 1000° F. at atmospheric pressure. The boiling points are “theoretical” because these materials coke or crack from thermal decomposition before they reach such temperatures.
Coking feedstocks normally consist of refinery process streams which cannot economically be further distilled, catalytically cracked, or otherwise processed to make fuel-grade blend streams. Typically, these materials are not suitable for catalytic operations because of catalyst fouling and/or deactivation by ash and metals. Common coking feedstocks include atmospheric distillation residuum vacuum distillation residuum, catalytic cracker residual oils, hydrocracker residual oils, and residual coils from other refinery units. Consequently, coking feedstocks vary substantially among refineries. Their composition and quantity primarily depend on (1) the input crude oil blend, (2) refinery processing equipment, and (3) the optimized operation plan for any particular refinery. In addition, contaminant compounds, which occur naturally in the crude oil, generally have relatively high boiling points and relatively complex molecular structures. Consequently, these contaminant compounds, containing sulfur and heavy metals, tend to concentrate in these residua. Many of the worst process streams in the refinery have become coker feedstock, and their contaminants usually end up in the petroleum coke by-product. For this reason, the coking processes have often been labeled as the “garbage can” of the refinery.
There are three major types of modern coking processes currently used in refineries to convert the heavy crude oil fractions into lighter hydrocarbons and petroleum coke: Delayed Coking, Fluid Coking®, and Flexicoking®. In all three of these coking processes, the petroleum coke is considered a by-product that is tolerated in the interest of more complete conversion of refinery residues to lighter hydrocarbon compounds, referred to as “cracked liquids” throughout this discussion. These cracked liquids range from pentanes to complex hydrocarbons with boiling ranges typically between 350 and 950° F. The heavier cracked liquids (e.g. gas oils) are commonly used as feedstocks for further refinery processing that transforms them into transportation fuel blend stocks.
The delayed coking process has evolved with many improvements since the mid-1930s. Essentially, delayed coking is a semi-continuous process in which the heavy feedstock is heated to a high temperature (between 900° F. and 1000° F.) and transferred to large coking drums. Sufficient residence time is provided in the coking drums to allow the thermal cracking and coking reactions to proceed to completion. The heavy residua feed is thermally cracked in the drum to produce lighter hydrocarbons and solid, petroleum coke. One of the initial patents for this technology (U.S. Pat. No. 1,831,719) discloses “The hot vapor mixture from the vapor phase cracking operation is, with advantage, introduced into the coking receptacle before its temperature falls below 950° F., or better 1050° F., and usually it is, with advantage, introduced into the coking receptacle at the maximum possible temperature.” The “maximum possible temperature” in the coke drum favors the cracking of the heavy residua, but is limited by the initiation of coking in the heater and downstream feed lines, as well as excessive cracking of hydrocarbon vapors to gases (butane and lighter). When other operational variables are held constant, the “maximum possible temperature” normally minimizes the volatile material remaining in the petroleum coke by-product. In delayed coking, the lower limit of volatile material in the petroleum coke is usually determined by the coke hardness. That is, petroleum coke with <8 wt. % volatile materials is normally so hard that the drilling time in the decoking cycle is extended beyond reason. Various petroleum coke uses have specifications that require the volatile content of the petroleum coke by-product be <12%. Consequently, the volatile material in the petroleum coke by-product typically has a target range of 8-12 wt. %. Prior art in the delayed coking process, including recent developments, has attempted to maximize the production of cracked liquids with less coke production. In this manner, the prior art of delayed coking has attempted to minimize coke yield and the amount of volatile materials it contains.
Fluid Coking®, developed since the late 1950s, is a continuous coking process that uses fluidized solids to increase the conversion of coking feedstocks to cracked liquids, and further reduce the volatile content of the product coke. In Fluid Coking®, the coking feedstock blend is sprayed into a fluidized bed of hot, fine coke particles in the reactor. Since the heat for the endothermic cracking reactions is supplied locally by these hot particles, this permits the cracking and coking reactions to be conducted at higher temperatures (about 480-565° C. or 900-1050° F.) and shorter contact times than in delayed coking. Roughly 15-25% of the coke is burned in an adjacent burner vessel in order to create the hot coke nuclei to contact the feed in the reactor vessel, and satisfy the process heat requirements. The Fluid Coking technology effectively removes the lower limit of volatile content in the petroleum coke, associated with delayed coking. The volatile content of the petroleum coke produced by the Fluid Coking® technology is typically minimized (or reduced), within the range of 4-10 wt. %. Consequently, the quantity of petroleum coke, produced by a given feedstock, and its volatile content are significantly reduced in the Fluid Coking® technology (vs. delayed coking).
Flexicoking® is an improvement of the Fluid Coking® process, in which a third major vessel is added to gasify the product coke. A coking reactor, a heater (vs. burner) vessel, and a gasifier are integrated into a common fluidized-solids circulating system. The “cold coke” from the reactor is partially devolatilized in the heater vessel. In the gasifier, over 95% of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production and use of a premium fuel grade petroleum coke does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production and use of a premium fuel grade petroleum coke, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production and use of a premium fuel grade petroleum coke will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2523846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.