Batteries: thermoelectric and photoelectric – Photoelectric – Panel or array
Reexamination Certificate
2000-05-04
2001-09-11
Diamond, Alan (Department: 1753)
Batteries: thermoelectric and photoelectric
Photoelectric
Panel or array
C136S258000, C136S251000, C136S255000, C136S256000, C136S259000, C257S053000, C257S055000, C257S051000, C257S433000, C257S443000, C257S457000, C257S461000
Reexamination Certificate
active
06288325
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention pertains to photovoltaic devices and, more particularly, to solar cells fabricated of amorphous silicon.
Solar cells and other photovoltaic devices convert solar radiation and other light into usable electrical energy. The energy conversion occurs as the result of the photovoltaic effect. Solar radiation (sunlight) impinging on a photovoltaic device and absorbed by an active region of semi-conductor material, e.g. an intrinsic i-layer of amorphous silicon, generates electron-hole pairs in the active region. The electrons and holes are separated by an electric field of a junction in the photovoltaic device. The separation of the electrons and holes by the junction results in the generation of an electric current and voltage. The electrons flow toward the region of the semiconductor material having an n-type conductivity. The holes flow toward the region of the semiconductor material having a p-type conductivity. Current will flow through an external circuit connecting the n-type region to the p-type region as long as light continues to generate electron-hole pairs in the photovoltaic device.
Single-junction devices comprise three layers. These are p- and n-layers which are extrinsic or doped and i-layer which is intrinsic or undoped (at least containing no intentional doping). The i-layer is much thicker than the doped layers. This is because mainly light absorbed in the i-layer is converted to electrical power which can be used in an external circuit. The thickness of the i-layer (sometimes called the absorber layer) determines how much light is absorbed. When a photon of light is absorbed in the i-layer it gives rise to a unit of electrical current (an electron-hole pair). However, this electrical current will go nowhere on its own. Hence, the p and n-layers. These layers, which contain charged dopant ions, set up a strong electric field across the i-layer. It is this electric field which draws the electric charge out of the i-layer and sends it through an external circuit where it can provide power for electrical components.
Thin film solar cells are typically constructed of amorphous silicon-containing semiconductor films on a substrate. The substrate of the solar cell can be made of glass or a metal, such as aluminum, niobium, titanium, chromium, iron, bismuth, antimony or steel. Soda-lime glass is often used as a substrate because it is inexpensive, durable and transparent. If a glass substrate is used, a transparent conductive coating, such as tin oxide (SnO
2
) can be applied to the glass substrate prior to forming the amorphous silicon-containing semiconductor films. A metallic contact can be formed on the back of the solar cell. Solar cells are often placed in metal frames to provide attractive photovoltaic modules.
Over the years numerous solar cells have been developed which have met with varying degrees of success. Single junction solar cells are useful but often cannot achieve the power and conversion efficiency of multi-junction solar cells. Usually, multi-junction solar cells and single junction solar cells have been constructed of various materials which are able to capture and convert only part of the solar spectrum into electricity. Multi-junction solar cells have been produced with amorphous silicon and its alloys, such as hydrogenated amorphous silicon carbon and hydrogenated amorphous silicon germanium, with wide and low bandgap intrinsic i-layers. Amorphous silicon solar cells have a relatively high open circuit voltage and low current but can only respond to capture and convert into electricity wavelengths of sunlight from 400 to 900 nanometers (nm) of the solar spectrum.
An amorphous silicon solar cell is comprised of a body of hydrogenated amorphous silicon (a-Si:H) material, which can be formed in a glow discharge of silane. Such cells can be of the type described in U.S. Pat. No. 4,064,521 entitled Semiconductor Device Having A Body Of Amorphous Silicon which, issued to David E. Carlson on December 20, 1977. Within the body of the cell there is an electric field which results from the different conductivity types of the semiconductor regions comprising the body.
Amorphous silicon solar cells are often fabricated by the glow discharge of silane (SiH
4
). The process of glow discharge involves the discharge of energy through a gas at relatively low pressure and high temperature in a partially evacuated chamber. A typical process for fabricating an amorphous silicon solar cell comprises placing a substrate on a heated element within a vacuum chamber. A screen electrode, or grid, is connected to one terminal of a power supply, and a second electrode is connected to the substrate. While silane, at low pressure, is admitted into the vacuum chamber, a glow discharge is established between the two electrodes and an amorphous silicon film deposits upon the substrate.
Amorphous hydrogenated silicon (a Si:H) based solar cell technology is a good candidate for large area, low-cost photovoltaic applications. The basic device structure is a single p-i-n junction or an n-i-p junction in which all layers are traditionally amorphous and are made in a continuous plasma deposition process.
Current output of a photovoltaic device is maximized by increasing the total number of photons of differing energy and wavelength which are absorbed by the semiconductor material. The solar spectrum roughly spans the region of wavelength from about 300 nanometers to about 2200 nanometers, which corresponds to from about 4.2 eV to about 0.59 eV, respectively. The portion of the solar spectrum which is absorbed by the photovoltaic device is determined by the size of the bandgap energy of the semiconductor material. Crystalline silicon (c-Si) has a bandgap energy of about 1.1 eV. Solar radiation (sunlight) having an energy less than the bandgap energy is not absorbed by the semiconductor material and, therefore, does not contribute to the generation of electricity, current, voltage and power, of the photovoltaic device.
The doped layers in the device play a key role in building up the strong internal electric field across the i-layer, which is the predominant force in collecting photocarriers generated in the i-layer. In particular, the doped layers in the recombination junction of a multi-junction solar cell have to support large electric fields extending into the intrinsic layers, in addition to the high field in the recombination junction itself. The interface region must promote efficient recombination of electrons, generated in the first i-layer, with holes from the second i-layer. Also, the tunnel junction layers should provide minimal optical absorption. However, the electrical properties of amorphous doped layers are relatively poor as compared to their crystalline counterparts. For instance, the conductivities are typically only 1×10
−6
(&OHgr;·cm)
−1
for a-Si:H player and ~1×10
−4
(&OHgr;·cm)
−1
for the n-layer. This is due partly to the low carrier mobilities in a-Si:H and partly to the low doping efficiencies in the disordered material. Moreover, the extremely high densities of tail states in amorphous materials prevent the Fermi levels from being too close to the band edges. The typical conductivity activation energies for a-Si:H p-layers and n-layers are ~0.4 eV and ~0.2 eV, respectively, thereby-limiting the open circuit voltage of the a-Si:H solar cells to ~0.9 V given its bandgap of ~1.75 eV.
At open circuit conditions, the voltage of the multi-junction solar cell should ideally be the sum of voltage developed across each p-i-n junction if there is no voltage dropped across the tunnel junctions. However, for non-ideal tunnel junctions a significant voltage in opposite polarity with that generated by the p-i-n junctions in the device can occur due to accumulation of photocarriers near the tunnel junction, and thus reduce the open circuit voltage.
Another important quality for the doped layers used in solar cells, besides good electrical properties, is low optical absorption. In contrast to
Jansen Kai W.
Maley Nagi
BP Corporation North America Inc.
Diamond Alan
Nemo Thomas E.
LandOfFree
Producing thin film photovoltaic modules with high integrity... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Producing thin film photovoltaic modules with high integrity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Producing thin film photovoltaic modules with high integrity... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2536280