Producing laser light of different wavelengths

Coherent light generators – Particular active media – Semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S008000, C372S026000

Reexamination Certificate

active

06215804

ABSTRACT:

The invention relates to a light source for producing or emitting light, the wavelength of which can be controlled such as by means of electrical signals, in particular a laser device which is tunable to emit light of different wavelengths, and also to a method of producing or emitting laser light of different wavelengths.
BACKGROUND
By introducing the use of wavelength division multiplexing (WDM) in optical fiber communication networks the bandwidth of and thereby the transmitted information amount in such networks can be made much higher than before, without using extremely high transmission rates. The information is instead transmitted on a number of parallel channels which each one comprises a definite, separate wavelength region or wavelength band. Systems are is presently introduced comprising 4-16 channels having a transmission rate or bit rate of 2.5 Gbits/s per channel. As regarded in a longer perspective of time, certainly still more channels will be used. Thus, it is completely realistic to use a number of 16-32 channels and in laboratory situations functioning transmission systems using 128 channels have been demonstrated. Further, in the same way, certainly also the bit rate per channel will be significantly increased, for example up to 10 Gbits/s. Still higher transmission rates have been used in laboratory situations such as bit rates of 20, 30 and 40 Gbits/s and they will perhaps also be used in the future.
For each channel and wavelength region in wavelength multiplexed transmission a separate light source such as a suitable semi-conductor laser must be used, the light issued by the laser in addition having to be capable of being modulated in order to obtain a bit stream carrying useful information. However, one of the main problems is to achieve such laser transmitters, since they must have a narrow optical line width, i.e. have a small chirp. It can be accomplished by among other methods introducing external modulation, i.e. that the laser is driven by a constant current, and by making the modulation by means of a separate intensity modulator or an intensity modulator monolithically integrated with the laser, for example of electroabsorption type. The laser should be either type DFB, i.e. a laser having distributed feedback, or of type DBR, i.e. a laser having a distributed Bragg reflector, in order to ensure that when operating the laser only one longitudinal electromagnetic mode lases.
The wavelength region which presently is most interesting for wavelength multiplexing comprises the range of about 1530-1560 nm. This is the range for which good fiber amplifiers are available, such as erbium doped fiber amplifiers (EDFA:s). In the future other wavelength ranges can start to be used such as for example about 1300 nm.
Typically, presently used light emitting and modulating devices are constructed so that laser transmitters of e.g. type DFB are manufactured for different wavelengths, at which the respective laser transmitter can be activated for emitting light. The lasing wavelength of such a DFB laser is determined by the active refractive index in the active layer of the laser and of the pitch (“pitch”) of the longitudinal grating, i.e. of the grating period. Such a laser can be tuned by controlling the temperature of the laser within a wavelength interval of about 5 nm, since in the typical case the wavelength varies by about 0.1 nm/K and since semiconductor lasers cannot be operated at too high temperatures due to increasing threshold current and a reduced output power of the emitted light for increasing temperature. It means that lasers have to be manufactured in different wavelength classes and that when installing transmitter equipment for wavelength multiplexing correct components have to be selected. It also means that the emitted wavelength cannot be easily changed within a larger wavelength range, i.e. a change to an arbitrary channel cannot easily be made. Possibly only a change of channels can be made for lasers operated at wavelengths which are close to each other. However, such channel changes can be of interest in flexible optical networks comprising optical cross connections (OXC) and optical multiplexers having an add and drop function (OADM, Optical Add/Drop Multi-plexers).
Different proposals have been presented in order to achieve lasers having a wider range in which the wavelength can be selected. These proposals comprise different variants of DBR lasers, in which the reflection maximum of the grating can be displaced by injecting current or by heating the wave guide locally or by subjecting the device to an electrostatic field. One proposal is based on the method that a DFB laser is divided in different segments and the current is varied in the different segments. A third proposal is based on the method that the laser cavity is divided in different subcavities having somewhat different lengths and interference is used between the different cavities in order to define the wavelength which is to be emitted, so called Y-lasers or C
3
-lasers. A problem associated with all these types is that the tuning mechanism is relatively complicated such as that it requires complicated control algorithms and that all those types which are based on current injection in order to change the refractive index, potentially suffer from problems associated with the reliability of the devices.
SUMMARY
It is an object of the invention to provide a laser device which can be tuned to provide light of different wavelengths within a not too limited wavelength range.
It is another object of the invention to provide a tunable laser device which has a reliable function and is not too sensitive to the choice of the operating voltages and operating currents.
It is another object of the invention to provide a tunable laser device which has a compact construction and can be built in a monolithically integrated way on a single circuit plate and thus does not require additional optical components in order to operate.
The problem which the invention intends to solve is thus to provide a tunable laser device which has a simple and reliable construction and function and which can easily be controlled to emit light at a selected wavelength within a not too limited wavelength range.
The solution of the problem presented above and also other problems is to provide a number of independent lasers which in principle are identical to each other and are located adjacent to each other in a line or row configuration. The lasers have different emission wavelengths and can be operated to emit light independently of each other. The light emitting directions of all lasers substantially agree with each other, i.e. the lasers have the same longitudinal direction. Further, the arrangement of lasers is such that light emitted from a laser in the row will pass in a direction towards and/or through the other lasers and in particular the laser cavities thereof.
Such a laser device is advantageously constructed by means of semiconductor lasers on the same semiconducting or other type substrate. Compared to a tunable laser arrangement comprising several lasers which emit light in parallel to each other and at the side of each other, in the laser device as described herein an optical coupler is not required which is a significant simplification of prior art devices.
Generally, thus, the laser device as described herein is robust and simple in its construction. It can also easily be controlled since it requires only a relatively simple control algorithm. In the design of a laser device based on semiconductors the emission wavelengths of the laser can be finely adjusted by controlling the temperature of the device in the known way. Further, the device requires a small surface on the substrate common to the lasers since no coupler is required. The manufacture of the laser device can be made by means of the same known process which is used for manufacturing DFB lasers.
Generally, for emitting laser light of one of a plurality of different wavelengths, thus the following steps are executed: first at least

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Producing laser light of different wavelengths does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Producing laser light of different wavelengths, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Producing laser light of different wavelengths will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2450718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.