Processing tool for mixing or comminuting food materials

Agitating – Operator supported

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06186656

ABSTRACT:

BACKGROUND
This invention relates to a processing tool for mixing or comminuting food materials.
A processing tool of this type as it is also known from DE 44 36 092 C1 possesses an elongate, tubular housing portion in which a drive shaft is guided in a spaced relationship to the walls and to the lower area of which a bell-shaped housing is integrally formed in which a cutter blade is rotatably fastened to the end of the drive shaft. A cover plate closes the bell-shaped housing in the direction to the tubular housing portion. A circumferential sealing member on the edge of the cover plate seals the cover plate relative to the housing wall. The purpose of this seal is to prevent food materials that are to be processed by the tool as by comminuting, pureeing or blending, from entering the tubular housing portion. The seal is further intended to prevent cleansing water from penetrating into the housing of the tool during cleaning.
On its side remote from the cutter blade, the working shaft is carried in a bearing sleeve which in turn is received in a supporting member. On the one hand, this supporting member bears against the inside of the cover plate or against an annular extension of the cover plate surrounding the working shaft, while on the other hand it takes support upon the inside of the housing in the transition area between the tubular housing portion and the bell-shaped housing. The supporting member further comprises a bell-shaped sealing element terminating at its edge in the annular sealing member sealing the cover plate from the bell-shaped housing.
For assembly of the processing tool of the type referred to in the foregoing, first the bearing sleeve is slipped over the working shaft and fixed by its ends to the working shaft in an axial direction by means of circlips. Then the supporting member is fitted to the bearing sleeve, wedging itself on the bearing sleeve. This subassembly is then inserted into the housing, the supporting member sliding into the tubular shaft housing in addition to engaging into stud-type extensions of the shaft housing. Finally, a shaft seal is fitted over the end of the working shaft, sealing the working shaft from the supporting member and the cover plate. As a final part, the cover plate is seated in place, which on its inside has a tubular extension with locking members making also locking engagement with the stud-type extensions of the shaft housing. With its inside, the cover plate urges against the shaft seal, while urging with its edge against the annular seal of the supporting member to obtain a tight seal. Finally, the working part which is, for example, a cutter blade, is screw threaded to the end of the shaft.
As becomes apparent from the above explanation of the assembly operation, several steps are required to assemble the processing tool, comprising the steps of carrying the working shaft in the housing, sealing the bell-shaped housing from the shaft housing by means of the cover plate, and finally securing the processing tool, these parts being assembled in the housing in consecutive sequence.
SUMMARY
It is an object of the present invention to configure the processing tool for an immersion blender in such fashion that the assembly process as explained in the foregoing with reference to the conventional immersion blender known from DE 44 36 092 C1 is simplified and facilitated. At the same time the invention aims to enable the use of less intricate components while a bearing of equally good or even improved quality is obtained.
The foregoing object is attained in the following way. First the supporting member is fitted to the extension of the cover plate and locked thereon by means of the locking members. Then the bearing sleeve is inserted. The individual parts are configured for interfitting engagement and firm connection with each other. Finally, the end of the working shaft is introduced into the bearing sleeve of this unit and the working shaft is secured thereto. Finally then, the processing tool which is, for example, a cutter blade, is mounted on the end of the working shaft. This subassembly forms a preassembled unit that is inserted in the bell-shaped housing in a final assembly operation. Considering that the individual parts, that is, the supporting member, the cover plate, the bearing sleeve and the working shaft are mounted outside the housing in a prior operation, these parts are readily accessible, ensuring a safe seat which can be inspected prior to final assembly in the housing. Also a materially simplified bearing structure results.
Preferably, the supporting member is constructed of two essentially tubular sections of different diameters having a shoulder surface in the area of transition between the two tubular sections. This shoulder surface provides a simple possibility for locking engagement of the locking members associated with the cover plate. Such a locking engagement may be accomplished by means of openings in the shoulder surface through which such locking members extend. Locking members of the type referred to in the foregoing may be formed by studs having hook-shaped ends arranged to extend through openings in the shoulder surface to hook onto the edge of the opening.
To accomplish a secure hold and distribute the forces uniformly on the circumference of the supporting member and/or the extension of the cover plate, four locking members are preferably provided.
With the arrangement of the present invention it is sufficient for the centering and bearing of the working shaft to be performed in the housing by means of the cover plate. This means that the working shaft is carried in the lower section of the shaft housing without the provision of any further support on the shaft housing.
To accomplish a good seal and a secure hold of the cover plate in the bell-shaped housing and hence also a secure fastening of the subassembly in the housing, the cover plate preferably has its edge adhesively bonded or welded to the inner surface of the bell-shaped housing. If a welding process is employed, this is performed, for example, by ultrasonic welding or similar welding methods in order to obtain an intimate connection between the cover plate and the housing.
The construction of the cover plate with its extension and the construction of the supporting member with the lower tubular section afford the possibility of inserting a radial packing ring, which seals the cover plate from the working shaft in the area of the bore through which the working shaft is passed. This radial packing ring is at the same time wedged between these parts when these are connected or lockingly engaged with each other as indicated in the foregoing.
To secure the bearing sleeve against an axial displacement in the supporting member, the bearing sleeve is preferably provided with a collar taking support upon a correspondingly configured bearing surface of the supporting member. It is desirable that this collar be arranged to extend radially to the working shaft.
To provide for an additional securing of the bearing sleeve, provision may be made for detent elements which retain the bearing sleeve in a fixed position in the supporting member. Such detent elements are preferably provided on the supporting member and, configured as hook-shaped parts embrace the end surface of the bearing sleeve.
For accurate positioning of the working shaft in its proper location relative to the bearing sleeve before the unit comprising the cover plate, the supporting member and the bearing sleeve is assembled in the housing, the bearing sleeve and the working shaft are fixed by a torus seated on the working shaft. Such a torus is preferably formed by a circlip that is clipped onto the working shaft in the area of a corresponding groove (claim
16
).


REFERENCES:
patent: 3117769 (1964-01-01), Spingler
patent: 3299924 (1967-01-01), Hanschitz
patent: 3333830 (1967-08-01), Spingler et al.
patent: 4405998 (1983-09-01), Brison
patent: 4850699 (1989-07-01), Rebordosa
patent: 5366286 (1994-11-01), Ruttimann
patent: 5368384 (1994-11-01), Duncan et al.
patent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processing tool for mixing or comminuting food materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processing tool for mixing or comminuting food materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processing tool for mixing or comminuting food materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606049

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.