Processing of iron aluminides by pressureless sintering of...

Powder metallurgy processes – Powder metallurgy processes with heating or sintering – Sintering which includes a chemical reaction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C419S046000, C419S057000, C419S060000

Reexamination Certificate

active

06506338

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to improvements in powder processing of intermetallic materials such as iron aluminides.
BACKGROUND OF THE INVENTION
Iron base alloys containing aluminum can have ordered and disordered body centered crystal structures. For instance, iron aluminide alloys having intermetallic alloy compositions contain iron and aluminum in various atomic proportions such as Fe
3
Al, FeAl, FeAl
2
, FeAl
3
, and Fe
2
Al
5
. Fe
3
Al intermetallic iron aluminides having a body centered cubic ordered crystal structure are disclosed in U.S. Pat. Nos. 5,320,802; 5,158,744; 5,024,109; and 4,961,903. Such ordered crystal structures generally contain 25 to 40 atomic % Al and alloying additions such as Zr, B, Mo, C, Cr, V, Nb, Si and Y.
A 1990 publication in Advances in Powder Metallurgy, Vol. 2, by J. R. Knibloe et al., entitled “Microstructure And Mechanical Properties of P/M Fe
3
Al Alloys”, pp. 219-231, discloses a powder metallurgical process for preparing Fe
3
Al containing 2 and 5% Cr by using an inert gas atomized powder. This publication explains that Fe
3
Al alloys have a DO
3
structure at low temperatures and transform to a B
2
structure above about 550° C. To make sheet, the powders were canned in mild steel, evacuated and hot extruded at 1000° C. to an area reduction ratio of 9:1. After removing from the steel can, the alloy extrusion was hot forged at 1000° C. to 0.340 inch thick, rolled at 800° C. to sheet approximately 0.10 inch thick and finish rolled at 650° C. to 0.030 inch. According to this publication, the atomized powders were generally spherical and provided dense extrusions and room temperature ductility approaching 20% was achieved by maximizing the amount of B2 structure.
A 1991 publication in Mat. Res. Soc. Symp. Proc., Vol. 213, by V. K. Sikka entitled “Powder Processing of Fe
3
Al-Based Iron-Aluminide Alloys,” pp. 901-906, discloses a process of preparing 2 and 5% Cr containing Fe
3
Al-based iron-aluminide powders fabricated into sheet. This publication states that the powders were prepared by nitrogen-gas atomization and argon-gas atomization. The nitrogen-gas atomized powders had low levels of oxygen (130 ppm) and nitrogen (30 ppm). To make sheet, the powders were canned in mild steel and hot extruded at 1000° C. to an area reduction ratio of 9:1. The extruded nitrogen-gas atomized powder had a grain size of 30 &mgr;m. The steel can was removed and the bars were forged 50% at 1000° C., rolled 50% at 850° C. and finish rolled 50% at 650° C. to 0.76 mm sheet.
A paper by V. K. Sikka et al., entitled “Powder Production, Processing, and Properties of Fe
3
Al”, pp. 1-11, presented at the 1990 Powder Metallurgy Conference Exhibition in Pittsburgh, Pa., discloses a process of preparing Fe
3
Al powder by melting constituent metals under a protective atmosphere, passing the metal through a metering nozzle and disintegrating the melt by impingement of the melt stream with nitrogen atomizing gas. The powder had low oxygen (130 ppm) and nitrogen (30 ppm) and was spherical. An extruded bar was produced by filling a 76 mm mild steel can with the powder, evacuating the can, heating 1½ hour at 1000° C. and extruding the can through a 25 mm die for a 9:1 reduction. The grain size of the extruded bar was 20 &mgr;m. A sheet 0.76 mm thick was produced by removing the can, forging 50% at 1000° C., rolling 50% at 850° C. and finish rolling 50% at 650° C.
A publication by A. LeFort et al., entitled “Mechanical Behavior of FeAl
40
Intermetallic Alloys” presented at the Proceedings of International Symposium on Intermetallic Compounds—Structure and Mechanical Properties (JIMIS-6), pp. 579-583, held in Sendai, Japan on Jun. 17-20, 1991, discloses various properties of FeAl alloys (25 wt. % Al) with additions of boron, zirconium, chromium and cerium. The alloys were prepared by vacuum casting and extruding at 1100° C. or formed by compression at 1000° C. and 1100° C. This article explains that the excellent resistance of FeAl compounds in oxidizing and sulfidizing conditions is due to the high Al content and the stability of the B2 ordered structure.
A publication by D. Pocci et al., entitled “Production and Properties of CSM FeAl Intermetallic Alloys” presented at the Minerals, Metals and Materials Society Conference (1994 TMS Conference) on “Processing, Properties and Applications of Iron Aluminides”, pp. 19-30, held in San Francisco, Calif. on Feb. 27-Mar. 3, 1994, discloses various properties of Fe
40
Al intermetallic compounds processed by different techniques such as casting and extrusion, gas atomization of powder and extrusion and mechanical alloying of powder and extrusion and that mechanical alloying has been employed to reinforce the material with a fine oxide dispersion. The article states that FeAl alloys were prepared having a B2 ordered crystal structure, an Al content ranging from 23 to 25 wt. % (about 40 at %) and alloying additions of Zr, Cr, Ce, C, B and Y
2
O
3
. The article states that the materials are candidates as structural materials in corrosive environments at high temperatures and will find use in thermal engines, compressor stages of jet engines, coal gasification plants and the petrochemical industry.
A publication by J. H. Schneibel entitled “Selected Properties of Iron Aluminides”, pp. 329-341, presented at the 1994 TMS Conference discloses properties of iron aluminides. This article reports properties such as melting temperatures, electrical resistivity, thermal conductivity, thermal expansion and mechanical properties of various FeAl compositions.
A publication by J. Baker entitled “Flow and Fracture of FeAl”, pp. 101-115, presented at the 1994 TMS Conference discloses an overview of the flow and fracture of the B2 compound FeAl. This article states that prior heat treatments strongly affect the mechanical properties of FeAl and that higher cooling rates after elevated temperature annealing provide higher room temperature yield strength and hardness but lower ductility due to excess vacancies. With respect to such vacancies, the articles indicates that the presence of solute atoms tends to mitigate the retained vacancy effect and long term annealing can be used to remove excess vacancies.
A publication by D. J. Alexander entitled “Impact Behavior of FeAl Alloy FA-350”, pp. 193-202, presented at the 1994 TMS Conference discloses impact and tensile properties of iron aluminide alloy FA-350. The FA-350 alloy includes, in atomic %, 35.8% Al, 0.2% Mo, 0.05% Zr and 0.13% C.
A publication by C. H. Kong entitled “The Effect of Ternary Additions on the Vacancy Hardening and Defect Structure of FeAl”, pp. 231-239, presented at the 1994 TMS Conference discloses the effect of ternary alloying additions on FeAl alloys. This article states that the B2 structured compound FeAl exhibits low room temperature ductility and unacceptably low high temperature strength above 500° C. The article states that room temperature brittleness is caused by retention of a high concentration of vacancies following high temperature heat treatments. The article discusses the effects of various ternary alloying additions such as Cu, Ni, Co, Mn, Cr, V and Ti as well as high temperature annealing and subsequent low temperature vacancy-relieving heat treatment.
A publication by D. J. Gaydosh et al., entitled “Microstructure and Tensile Properties of Fe40 At.Pct. Al Alloys with C, Zr, Hf and B Additions” in the September 1989 Met. Trans A, Vol. 20A, pp. 1701-1714, discloses hot extrusion of gas-atomized powder wherein the powder either includes C, Zr and Hf as prealloyed additions or B is added to a previously prepared iron-aluminum powder.
A publication by C. G. McKamey et al., entitled “A review of recent developments in Fe
3
Al-based Alloys” in the August 1991 J. of Mater. Res., Vol. 6, No. 8, pp. 1779-1805, discloses techniques for obtaining iron-aluminide powders by inert gas atomization and preparing ternary alloy powders based on Fe
3
Al by mixing alloy powders to produce the desired alloy composition and consolidating by hot extrusion, i.e., p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processing of iron aluminides by pressureless sintering of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processing of iron aluminides by pressureless sintering of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processing of iron aluminides by pressureless sintering of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3018730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.