Processing of flaxseed

Food or edible material: processes – compositions – and products – Processes – Separating a starting material into plural different...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06440479

ABSTRACT:

TECHNOLOGICAL BACKGROUND
The invention relates to the processing of flaxseed (Linum sp.) in order to produce a food supplement.
The flaxseed husk consists of three separate anatomic parts. The outer part consists of a water-soluble mucilage, the epidermic layer. Under the mucilage, there is the actual husk substance, the spernoderme, consisting of four layers. The inner husk surface is the endosperme, and the seed core consists of the cotyledon, which accounts for about half of the weight of the seed. The major portion of the oil and protein of the seed is located in the cotyledon. Seeds have been used as such or in a ground form in animal feed and human nutrition. The mucilage separated from the husk has also been used in medicinal and cosmetic products.
Flaxseed has also been husked in order to separate the husk portion from the inner portion (Wanasundra & Shahidi, Food Chem, 59 (1997) 47-55). Nevertheless, husking is a laborious and awkward process due particularly to the seed shape. Abrasive methods have been implemented in the husking.
Oil can be separated from flaxseed by pressing or extracting. The solid residue has been mainly used as an animal feed. It has been generally considered inapt for use as a foodstuff (Oomah & Mazza, Food. Chem., 48 (1993), 109-114), but has been used all the same, especially in bakery products. Its use is restricted especially by the flavour and colour changes in the foodstuff, which are felt to be unpleasant.
Flaxseed also contains lignans in an amount of 80-370 mg/100 g (Mazur et al., Anal. Biochem., 233 (1996) 169-180). In nutrition, lignans have proved to provide health benefits, i.a. anti-carcinogenic effects.
GENERAL DESCRIPTION OF THE INVENTION
A method has now been found in which the husk layer is removed from whole flaxseed and the husk is subsequently divided into a firstly removed mucilage fraction and a secondly removed fibre fraction. The mucilage fraction comprises the outermost husk layers and is rich in water-dispersible carbohydrates (mucilage). The fibre fraction comprises the inner husk layers and is particularly rich in fibres and lignans. The abrasion can be performed in a mill specifically equipped with millstones.
The husk removing method of the invention serves to detach separate fractions suitable for different purposes of use in one single process.
A method has now also been found, in which flaxseed solid substance obtained by separating oil from the seed is bleached by treating it with a mixture of water and alcohol. The bleaching mixture may contain hydrogen peroxide in addition. Husks or husk fractions separated from whole seeds can also be bleached with the bleaching method of the invention.
The bleaching method of the invention yields a product, which, used as a food supplement, causes less changes in colour and flavour than a non-processed solid substance does.
DETAILED DESCRIPTION OF THE INVENTION
The outermost flaxseed layer comprises principally water-soluble carbohydrates and forms the flaxseed mucilage. Under this, there is a layer comprising mainly fibres. When a whole unbroken flaxseed is abrased, the outer layer is first removed. This layer is separated as a mucilage fraction. Then the inner layer comes off, being separated as a fibre fraction. This fraction is also rich in lignans. The remainder comprises the inner seed portion, which is rich in oil and proteins. The inner portion accounts for approximately half of the weight of the seed.
The mucilage fraction is usable in foodstuffs especially as a viscosity-increasing agent in breads, for instance. The mucilage fraction is also usable in cosmetic and medicinal products. The Theological behaviour of the mucilage fraction is similar to that of arabic gum.
The mucilage fraction accounts for about 0.5-10% of the weight of the seed, such as 5-8%. The mucilage fraction draws along some of the inner portion of the husk. The fibre fraction is usable as a food supplement particularly when an increase in fibres and lignans is desired. Lignans have proved to provide health benefits. They seem to act as anti-carcinogenes, among other things. The fibre fraction naturally comprises a certain amount of oil. The oil can be removed by means of hexane for instance. A fraction particularly rich in fibres can also be separated from the fibre fraction. A lignan concentrate can be further produced from the fibre fraction e.g. by screening or grading, especially if the oil is first removed. Lignan can be concentrated also by means of extraction.
The fibre fraction accounts for about 20-70%, such as 30-50%, especially 35-45% of the weight of the seed.
Oil can be separated from the inner part of the seed, the residue being rich in proteins. A protein part with a particularly high, up to 70% protein content, and a mucilage fraction can be further separated from the residue.
The abrasion is performed by seeking to maintain the inner part of the seed as complete as possible to allow it to be separated from the abrased powder. The abrasion can be performed using commonly used abrasing devices. The devices can be modified rice polishing devices, for instance. The abrasion is performed by seeking to detach the husk portion as completely as possible, while removing only a minimum of the inner portion. The abrasion can be performed as a continuous process.
The seeds can be abrased for instance in a mill equipped with millstones. The rough surfaces of the millstones abrase the seeds at a given rate, preferably for about 1-3 minutes. The abrased powder has been found to have a particularly high lignan content after an abrasion period of about 1 minute.
The fibre fraction is a brownish powder. It can be bleached and simultaneously deflavoured, degreased and upgraded.
In the bleaching, the powder is moisturised with water, the ratio of water to powder varying e.g. in the range from 1:1 to 3:1. Enzymes such as lipase or protease can be added to the water. The water is allowed to act for e.g. 0.5-12 h, and then the paste is homogenised in alcohol, such as C1-C5 alcohol, especially ethanol or isopropanol, particularly in isopropanol. The alcohol amount is e.g. 2-5 times the powder amount. The homogenised alcohol-containing suspension is separated from the solution e.g. by filtering or centrifugating. The separated powder is washed e.g. with a 2-6-fold alcohol amount, and after this the suspension is preferably filtered and centrifugated. The alcoholic mass is dried e.g. at 20-90° C. The dried paste is ground or granulated to the desired grain size if necessary.
The alcohol breaks down the viscosity generated by the alcohol-insoluble but water-soluble carbohydrate constituent. This makes it easy to homogenise the paste to a non-viscous suspension and to perform the mechanical separating treatments of the suspension, such as filtering and centrifugation. The water treatment results in the solid structure opening up so that the major portion of the remaining oil in the paste is removed during the water-alcohol treatment. The more finely ground the powder, the stronger the effect. The alcohol added after the water treatment serves to precipitate the water-soluble carbohydrate, detaching it from the surrounding matrix. This allows for instance the dry product to be concentrated into a water-soluble component by mechanical means, such as grading.
The bleaching also removes cyanogens from the product.
A better result than with mere water-alcohol treatment is achieved by adding e.g. 2-7% of hydrogen peroxide to the aqueous solution at the elutriation stage. Hydrogen peroxide added before alcohol detaches mucilages from the surface efficiently. Before the bleaching, the powder can be thermally treated in order to inactivate any enzyme activity affecting the flavour. The temperature range may be e.g. 40-80° C. and the treatment period e.g. 0.5-2 h. The treatment can be performed in vacuum. Besides inactivating enzymes, the temperature and possible vacuum have the joint effect of removing low-molecular compounds affecting the taste.
A solid residue remaining after oil has been separated from whole

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processing of flaxseed does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processing of flaxseed, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processing of flaxseed will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2887688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.