Processing method for motion measurement

Data processing: measuring – calibrating – or testing – Measurement system – Accelerometer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S011000, C701S220000

Reexamination Certificate

active

06697758

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
1. Field of the Present Invention
The present invention relates to a processing method for motion measurements, and more particularly to a processing method for a motion inertial measurement unit, wherein output signals of angular rate producer and acceleration producer, including angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain highly accurate attitude and heading measurements of a carrier under dynamic environments.
2. Description of Related Arts
Generally, conventional methods for determining the motion of a carrier are to employ inertial angular rate devices and acceleration devices, including gyros and accelerometers, radio positioning systems, and hybrid systems.
Conventional inertial angular rate devices and acceleration devices, including gyros and accelerometers, which are commonly used in inertial systems and sense rotation and translation motion of a carrier, include Floated Integrating Gyros (FIG), Dynamically-Tuned Gyros (DTG), Ring Laser Gyros (RLG), Fiber-Optic Gyros (FOG), Electrostatic Gyros (ESG), Josephson Junction Gyros (JJG), Hemisperical Resonating Gyros (HRG), Pulsed Integrating Pendulous Accelerometer (PIPA), Pendulous Integrating Gyro Accelerometer (PIGA), etc.
New horizons are opening up for inertial sensor device technologies. MEMS (MicroElectronicMechanicalSystem) inertial sensors offer tremendous cost, size, reliability improvements for guidance, navigation, and control systems, compared with conventional inertial sensors. It is well-known that the silicon revolution began over three decades ago, with the introduction of the first integrated circuit. The integrated circuit has changed virtually every aspect of our lives. The hallmark of the integrated circuit industry over the past three decades has been the exponential increase in the number of transistors incorporated onto a single piece of silicon. This rapid advance in the number of transistors per chip leads to integrated circuits with continuously increasing capability and performance. As time has progressed, large, expensive, complex systems have been replaced by small, high performance, inexpensive integrated circuits. While the growth in the functionality of microelectronic circuits has been truly phenomenal, for the most part, this growth has been limited to the processing power of the chip.
MEMS, or, as stated more simply, micromachines, are considered the next logical step in the silicon revolution. It is believed that this next step will be different, and more important than simply packing more transistors onto silicon. The hallmark of the next thirty years of the silicon revolution will be the incorporation of new types of functionality onto the chip structures, which will enable the chip to, not only think, but to sense, act, and communicate as well.
MEMS exploits the existing microelectronics infrastructure to create complex machines with micron feature sizes. These machines can have many functions, including sensing, communication, and actuation. Extensive applications for these devices exist in a wide variety of commercial systems.
It is quite a straightforward idea that we can exploit the MEMS inertial sensors' merits of small size, low cost, batch processing, and shock resistance to develop a low cost, light weight, miniaturized, highly accurate integrated MEMS motion measurement system.
Existing processing methods for motion inertial measurement unit are most suitable for conventional gyros and accelerometers, and can not produce optimal performance for MEMS angular rate device and acceleration device.
SUMMARY OF THE PRESENT INVENTION
The main objective of the present invention is to provide a processing method, wherein output signals of angular rate producer and acceleration producer, including an angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain highly accurate attitude and heading measurements of the carrier under dynamic environments.
Another objective of the present invention is to provide a processing method, wherein output voltage signals of angular rate producer and acceleration producer, including angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain digital highly accurate digital angular increment and velocity increment measurements of the carrier, and are further processed to obtain highly accurate attitude and heading measurements of the carrier under dynamic environments. The present invention can be applicable to existing angular rate devices and acceleration devices, but is more suitable for emerging MEMS angular rate devices and acceleration devices assembled into a core micro IMU. The present invention enables the core micro IMU, which has the following unique features:
(1) Attitude Heading Reference System (AHRS) Capable Core Sensor Module.
(2) Miniaturized (Length/Width/Height) and Light Weight.
(3) High Performance and Low Cost.
(4) Low Power Dissipation.
(5) Dramatic Improvement In Reliability (microelectromechanical systems—MEMS).
Another objective of the present invention is to provide a processing method wherein output voltage signals of angular rate producer and acceleration producer, including angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain digital highly accurate digital angular increment and velocity increment measurements of the carrier, and are further processed to obtain highly accurate attitude and heading measurements of the carrier under dynamic environments. The present invention enables the core micro IMU to be into an integrated micro land navigator, which has the following unique features:
(1) Miniature, light weight, low power, low cost.
(2) AHRS, odometer, integrated GPS chipset and flux valve.
(3) Integration filter for sensor data fusion and zero velocity updating.
(4) Typical applications: automobiles, railway vehicles, miniature land vehicles, robots, unmanned ground vehicles, personal navigators, and military land vehicles.
Another objective of the present invention is to provide a processing method wherein output voltage signals of angular rate producer and acceleration producer, including angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain digital highly accurate digital angular increment and velocity increment measurements of the carrier, and are further processed to obtain highly accurate attitude and heading measurements of the carrier under dynamic environments. The present invention enables the core micro IMU to function as aircraft inertial avionics, which has the following unique features:
(1) Rate Gyro
(2) Vertical Gyro
(3) Directional Gyro
(4) AHRS
(5) IMU
(6) Inertial Navigation System
(7) Fully-Coupled GPS/MEMS IMU Integrated System
(8) Fully-Coupled GPS/IMU/Radar Altimeter Integrated System
(9) Universal vehicle navigation and control box.
Another objective of the present invention is to provide a processing method wherein output voltage signals of angular rate producer and acceleration producer, including angular rate device array and acceleration device array, or an angular rate and acceleration simulator, are processed to obtain digital highly accurate digital angular increment and velocity increment measurements of the carrier, and are further processed to obtain highly accurate attitude and heading measurements of the carrier under dynamic environments. The present invention enables the core micro IMU to be a Spaceborne MEMS IMU Attitude Determination System and a Spaceborne Fully-Coupled GPS/MEMS IMU Integrated system for orbit determination, attitude control, payload pointing, and formation flight, which has the following unique features:
(1) Shock resistant and vibration tolerant
(2) High anti-jamming
(3) High dynamic performance
(4) Broad operating range of temperatures
(5) High resolution

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processing method for motion measurement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processing method for motion measurement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processing method for motion measurement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334106

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.