Processes for the preparation of alcohols

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S832000, C568S834000, C568S835000, C568S881000

Reexamination Certificate

active

06476278

ABSTRACT:

TECHNICAL FIELD
The invention of this application relates to a method for producing alcohols.
More specifically, the invention of this application relates to an advantageous method for producing alcohols useful as synthetic intermediates of medical drugs or agricultural chemicals or as synthetic intermediates of various general-purpose chemical products using carbonyl compounds as a raw material
BACKGROUND ART
As a method in which carbonyl compounds are hydrogenated using a homogeneous catalyst to produce the corresponding alcohols, such methods as described in Eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Comprehensive Organometallic Chemistry, Vol. 4, p 931 (1982), using a ruthenium complex, are known.
However, since the hydrogenation activity was low for the above-described method, and a relatively high temperature or high hydrogen pressure was required, it was not necessarily suitable for practical use.
OBJECTIVE OF THE INVENTION
Accordingly, the invention of this application aims to solve the aforesaid problems of the prior technique, and to provide a practical advantageous novel method for producing alcohols, by which the alcohols may be produced efficiently by the hydrogenation of carbonyl compounds under milder conditions, without requiring condition such as high temperature or high hydrogen pressure, as in conventional methods.
As a solution of the above-mentioned problems, the invention of the present application firstly provides a method for producing alcohols, comprising reacting carbonyl compounds with hydrogen in the presence of a bipyridyl derivative, a group VIII transition metal complex and a base.
Further, the invention of the present application secondly provides a method for producing alcohols, comprising the reduction of carbonyl compounds in the presence of a bipyridyl derivative, a group VIII transition metal complex, a base and an alcoholic solvent. Further, the invention of the present application thirdly provides the above method, wherein the base is a hydroxide or a salt of an alkali metal or an alkaline earth metal, or a quaternary ammonium salt. Fourthly, the present invention provides the above method, wherein the carbonyl compounds are represented by the following general formula (a):
(wherein R
1
and R
2
may be the same or different, each representing a hydrogen atom, a halogen atom, an alkyl group which may contain a substituent, an aralkyl group which may contain a substituent, an aryl group which may contain a substituent, an alkenyl group which may contain a substituent, an alkoxyl group which may contain a substituent or an alkyloxycarbonyl group, or R
1
and R
2
may be bound to form a cyclic compound, and R
1
and R
2
may not both be hydrogen atoms at the same time). Fifthly, the present invention provides any of the first to fourth methods, wherein the group VIII transition metal complex is represented by the following general formula (b):
M
1
X
m
L
n
  (b)
(wherein M
1
represents rhodium, ruthenium, iridium or platinum, x represents a hydrogen atom, a halogen atom, a carboxyl group, an alkoxy group or a hydroxy group, L represents an organic ligand, and m and n are each an integer of 0 to 6 where 0<m+n≦6) Sixthly, the present invention provides any of first to fourth methods, wherein the bipyridyl derivative is represented by the following general formula (c):
(wherein R
3
, R
4
, R
5
, R
6
, R
7
, R
8
, R
9
and R
10
may be the same or different, and represent a hydrogen atom, a halogen atom, an alkyl group which may contain a substituent, an aralkyl group which may contain a substituent, an aryl group which may contain a substituent or an alkenyl group which may contain a substituent).
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of the present application has the above-mentioned characteristics, and the embodiments thereof are described below.
First, in the invention of the present application, carbonyl compounds are used as a raw material, and may be chosen from various compounds, such as those represented by the above-mentioned general formula (a).
The substituents R
1
and R
2
of the carbonyl compound represented by the general formula (a), may be halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom and the like, alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-amyl group, neopentyl group, n-hexyl group, cyclohexyl group, n-octyl group, n-nonyl group, menthyl group, 2,3,4,-trimethyl-3-pentyl group, 2,4-dimethyl-3-pentyl group and the like, aralkyl groups such as benzyl group, 2-phenylethyl group, 2-naphthylethyl group, diphenylmethyl group and the like, aryl groups such as phenyl group, naphthyl group, biphenyl group, furyl group, thiophenyl group and the like, alkenyl groups such as 2-methyl-1-propenyl group, 2-butenyl group, trans-&bgr;-styryl group, 3-phenyl-1-propenyl group, 1-cyclohexenyl group and the like, alkoxyl groups such as methoxy group, ethoxy group, n-propoxy group, t-butoxy group and the like, aryloxy groups such as phenoxy group and the like, and alkyloxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, t-butyloxycarbonyl group, benzyloxycarbonyl group, phenyloxycarbonyl group and the like. When these groups are further substituted with substituents, examples of such substituents include the above-mentioned halogen atoms, the above-mentioned alkoxyl groups, the above-mentioned aryloxy groups, lower alkyl groups such as methyl group, ethyl group, isopropyl group, n-butyl group, t-butyl group, n-amyl group, n-hexyl group and the like, lower alkylthio groups such as n-propylthio group, t-butylthio group and the like, arylthio groups such as phenylthio group and the like, nitro group, hydroxyl group and the like.
Typical examples of the specific carbonyl compounds are acetone, acetophenone, benzaldehyde, benzalacetone, cyclohexane, benzophenone, substitution compounds thereof and the like.
Further, as the group VIII transition metal complex. compounds such as those represented by the general formula (b) may be mentioned as examples.
The organic ligand: L, includes CO, NO, NH
2
, NH
3
and the like, as well as olefin ligands, acetylene ligands, aromatic compound ligands, organic oxygen-containing compound ligands, organic sulfur-containing compound ligands, organic nitrogen-containing compound ligands and the like.
Examples of the olefin ligand include ethylene, propylene, butadiene, cyclohexene, 1,3-cyclohexadiene, 1,5-cyclooctadiene, cyclooctatriene, norbornadiene, acrylic acid ester, methacrylic acid ester, cyclopentadienyl, pentamethylcyclopentadienyl and the like. Further, 5-membered compounds represented by the following general formula exemplify the 5-membered compounds which are generally used as ligands
(wherein R
a
to R
e
may be the same or different substituents, and represent a hydrogen atom, a halogen atom, an alkyl group which may contain a substituent, an aralkyl group which may contain a substituent, an aryl group which may contain a substituent, an alkenyl group which may contain a substituent, an alkoxyl group which may contain a substituent or an alkyloxycarbonyl group.
Specifically, examples of the halogen atom, the halogen atoms include fluorine atom, chlorine atom, bromine atom, iodine atom and the like, examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-amyl group, neopentyl group, n-hexyl group, cyclohexyl group, n-octyl group, n-nonyl group, menthyl group, 2,3,4-trimethyl-3-pentyl group, 2,4-dimethyl-3-pentyl group and the like, examples of the aralkyl group include benzyl group, 2-phenylethyl group, 2-naphthylethyl group, diphenylmethyl group and the likes examples of the aryl group include phenyl group, naphthyl group, biphenyl group, furyl group, thiophenyl group and the like, examples of the alkenyl group include 2-methyl-1-propenyl group, 2-butenyl group, trans-&bgr;-styryl group, 3-phenyl-1-propenyl group, 1-cyclohexenyl group an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes for the preparation of alcohols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes for the preparation of alcohols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for the preparation of alcohols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967777

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.