Processes for the preparation of 5-hydroxy-3-oxopentanoic...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S174000, C554S115000

Reexamination Certificate

active

06340767

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a process for producing a 5-hydroxy-3-oxopentanoic acid derivative which is of value as a pharmaceutical intermediate, particularly an intermediate of an HMG-COA reductase inhibitor.
BACKGROUND ART
The hitherto-known process for producing a 5-hydroxy-3-oxopentanoic acid derivative includes the following processes.
(1) The process in which 3-hydroxypropionic acid imidazolide prepared from 3-hydroxypropionic acid and diimidazoyl ketone is coupled to a malonic acid monoester monomagnesium salt (Synthesis, 1992, 4, 403-408).
(2) The process in which a lithium enolate prepared from tert-butyl acetate and lithium diisopropylamide is reacted with a 3-hydroxypropionic acid ester (Japanese Kokai Publication Hei-8-198832, Chem. Pharm. Bull., 1994, 42 (11), 2403-2405, Tetrahedron Lett., 1993, 49 (10), 1997-2010, Tetrahedron, 1990, 46 (29), 7283-7288, Tetrahedron Asymmetry, 1990, 1 (5), 307-310, Tetrahedron Lett., 1989, 30 (38), 5115-5118, Tetrahedron Lett., 1987, 28 (13), 1385-1388, Synthesis, 1985, (1), 45-48).
However, the prior art (1) requires an expensive starting material while the prior art (2) involves a very low reaction temperature of −78° C. to −40° C., so that neither is a favorable process for commercial-scale production.
DISCLOSURE OF INVENTION
The object of the present invention, in the above perspective, is to provide a production process by which a 5-hydroxy-3-oxopentanoic acid derivative of the following formula (IV), a useful pharmaceutical intermediate, can be prepared easily from a readily available, inexpensive starting material without using any extraordinary production equipment such as a very-low-temperature reactor:
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group.
The inventors of the present invention made intensive investigations in view of the above state of the art and found that, starting with a readily available, inexpensive starting material, a 5-hydroxy-3-oxopentanoic acid derivative of the following formula (IV) can be produced without using any special equipment such as a very-low-temperature reactor:
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group.
The present invention, therefore, relates to a process for producing a 5-hydroxy-3-oxopentanoic acid derivative of the following formula (IV):
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group,
which comprises permitting a lithium amide of the following formula (III):
wherein R
4
and R
5
may be the same or different and each represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms, an aralkyl group of 7 to 12 carbon atoms, and a silyl group
to act upon a mixture of an acetic acid ester of the following formula (I) and a 3-hydroxypropionic acid derivative of the following formula (II) at a temperature not below −20° C.:
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms:
wherein R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group; R
3
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
and R
3
may be joined to each other to form a ring.
The invention further relates to a process for producing a 5-hydroxy-3-oxopentanoic acid derivative of the following formula (IV):
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group,
which comprises treating a mixture of an acetic acid ester of the following formula (I) and a 3-hydroxypropionic acid derivative of the following formula (II):
CH
3
CO
2
R
1
  (I)
wherein R
1
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms:
wherein R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group; R
3
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and R
2
and R
3
may be joined to each other to form a ring
with a Grignard reagent of the following formula (V):
wherein R
6
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; and X represents a halogen atom to prepare a mixture of a compound of the following formula (VI) and an acetic acid ester of the above formula (I):
wherein R
2
represents any of hydrogen, an alkyl group of 1 to 12 carbon atoms which may have a substituent, an alkenyl group of 2 to 12 carbon atoms which may have a substituent, an aryl group of 6 to 12 carbon atoms which may have a substituent, an aralkyl group of 7 to 12 carbon atoms which may have a substituent, a cyano group, a carboxyl group and an alkoxycarbonyl group; R
3
represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms and an aralkyl group of 7 to 12 carbon atoms; R
2
and R
3
may be joined to each other to form a ring; and X represents a halogen atom,
and permitting a lithium amide of the following formula (III):
wherein R
4
and R
5
maybe the same or different and each represents any of an alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms, an aralkyl group of 7 to 12 carbon atoms, and a silyl group,
to act upon the mixture at a temperature not below −20° C.
The present invention further relates to a process for producing a 5-hydroxy-3-oxopentanoic acid derivative of the following formula (IV):
wherein R
1
represents

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes for the preparation of 5-hydroxy-3-oxopentanoic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes for the preparation of 5-hydroxy-3-oxopentanoic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for the preparation of 5-hydroxy-3-oxopentanoic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2826548

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.