Chemistry: molecular biology and microbiology – Process of utilizing an enzyme or micro-organism to destroy... – Treating animal or plant material or micro-organism
Reexamination Certificate
2000-09-15
2003-05-20
Prats, Francisco (Department: 1651)
Chemistry: molecular biology and microbiology
Process of utilizing an enzyme or micro-organism to destroy...
Treating animal or plant material or micro-organism
C435S134000, C435S135000, C435S072000, C435S155000, C435S158000, C435S159000
Reexamination Certificate
active
06566124
ABSTRACT:
This patent application cross-references and incorporates by reference co-pending patent application “Synthesis of Higher Polyol Fatt) Acid Polyesters by Transesterification”, filed in the name of Trout et al. and co-pending application “Improved Processes for Synthesis and Purification of Nondigestible Fats Using Lipase”, filed in the name of Trout et al., both applications filed on the same date as this application.
TECHNICAL FIELD
This invention relates to low-temperature atmospheric pressure processes for the purification of polyol fatty acid polyesters or other nondigestible fats that have a digestible fat, such as a triglyceride, in the final product. More particularly, this invention relates to processes for purifying nondigestible fats from a crude reaction mixture by use of an aqueous solution comprising lipase.
BACKGROUND ART
The food industry has recently focused attention on polyol fatty acid polyesters for use as low-calorie fats in food products. Triglycerides (triacylglycerols) constitute about 90% of the total fat consumed in the average diet. One method by which the caloric value of edible fat could be lowered would be to decrease the amount of triglycerides that is absorbed in the human system, since the usual edible triglyceride fats are almost completely absorbed (see
Lipids,
2, H. J. Deuel, Interscience Publishers, Inc., New York, 1955, page 215). Low calorie fats which can replace triglycerides are described in Mattson, et al., U.S. Pat. No. 3,600,186. Mattson, et al. disclose low calorie, fat-containing food composition in which at least a portion of the triglyceride content is replaced with a polyol fatty acid ester having at least four fatty acid ester groups, with each fatty acid having from eight to twenty-two carbon atoms.
Rizzi et al., U.S. Pat. No. 3,963,699, disclose a solvent-free transesterification process in which a mixture of a polyol (such as sucrose), a fatty acid lower alkyl ester (such as a fatty acid methyl ester), an alkali metal fatty acid soap, and a basic catalyst is heated to form a homogenous melt. Excess fatty acid lower alkyl ester is added to the melt to form the higher polyol fatty acid polyesters. The polyesters arc then separated from the reaction mixture by any of the routinely used separation procedures; distillation or solvent extraction are preferred.
Volpenhein, U.S. Pat. Nos. 4,517,360 and 4,518,772, discloses a solvent-free transesterification process in which a mixture of a polyol (such as sucrose), a fatty acid ester selected from the group consisting of methyl esters, 2-methoxy ethyl esters, and benzyl esters, an alkali metal fatty acid soap, and a basic catalyst is heated to form a homogenous melt, to which is added excess fatty acid ester to form the higher polyol fatty acid polyesters. The polyesters are then separated from the reaction mixture by any of the routinely used separation procedures; distillation, water washing, conventional refining techniques or solvent extraction are preferred.
Bossier III, U.S. Pat. No. 4,334,061, discloses a process for recovering polyol fatty acid polyesters from crude reaction product by contacting the crude reaction product with an aqueous washing medium while maintaining the resulting mixture at a pH of from 7 to about 12, in the presence of an emulsion decreasing organic solvent. The alkali metal fatty acid soaps and the color-forming bodies are dissolved in the aqueous phase. The polyol fatty acid polyester is recovered from the organic phase by solvent extraction to remove excess fatty acid lower alkyl esters and steam stripping to remove trace amounts of residual fatty acid lower alkyl esters and solvent.
Wagner et al., U.S. Pat. No. 4,983,731, disclose a process for separation and purification of sugar esters which comprises forming a mixture of crude sugar ester reaction product, water and an aliphatic alcohol having 1 to 4 carbons, recovering a precipitated sugar ester, and washing the sugar ester with a volatile solvent.
Masuda et al., Japanese Patent No. HEI 2[1990]-1158, disclose the use of lipid-decomposing enzymes and optional reducing agents to treat crude fatty acid glycol esters. The method selectively decomposes fatty acid esters of aliphatic low-molecular monohydric alcohols, aliphatic low-molecular dihydric alcohols, and Carbitol (diethylene glycol low-molecular monoalkyl ethers). Masuda et al. disclose examples in which some digestible fats are decomposed while other digestible fats, such as sucrose lower polyesters (sucrose mono- and di-esters), are not decomposed.
Dow Chemical Company, WO 91/10368 and Elsen et al., U.S. Pat. No. 5,422,131, disclose methods of determining the digestibility of fat compositions using lipase. The fat compositions are treated with lipase and the liberated free fatty acid level is determined by base titration.
Triglycerides and other digestible lipids must be removed from non-digestible fat substitutes to render them “fat-free”. Unfortunately, removal of triglycerides from polyol esters can be difficult and expensive because of extreme temperatures and pressures often involved. Human lipase will hydrolyze acylglycerols but not higher polyol fatty acid polyesters; therefore, it would be advantageous if improved processes for the removal of triglycerides from polyol fatty acid polyesters utilizing lipases were developed.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to obviate various problems of the prior art.
It is another object of this invention to provide novel processes for the removal of digestible fats from non-digestible fat substitutes.
It is also an object of this invention to provide novel processes for the purification of nondigestible fats, e.g., polyol fatty acid polyesters, in particular higher sucrose polyesters having an average of from about 5 to about 8 ester moieties per molecule sucrose, by removing digestible fats or triglycerides.
It is an additional object of this invention to provide novel processes for the purification of polyol fatty acid polyesters at low temperatures and atmospheric pressure.
It is also an object of this invention to provide novel processes for the purification of polyol fatty acid polyesters using lipase.
In accordance with one aspect of the present invention there is provided processes for removing digestible fat from a crude reaction mixture comprising nondigestible fat and at least one digestible fat selected from the group consisting of digestible fats having fatty acid chains, comprising the steps of: (1) treating the crude reaction mixture with an aqueous solution comprising lipase at a pH sufficient to form free fatty acid chains from the fatty acid chains and/or soaps of the fatty acid chains; and (2) removing the free fatty acids and/or the soaps of the fatty acid chains.
In accordance with another aspect of the present invention there is provided batch and continuous processes, for synthesizing polyol fatty acid polyesters comprising the steps of: (1) mixing ingredients comprising (a) unesterified first polyol having hydroxyl groups, (b) second polyol esterified with fatty acids, (c) basic catalyst, and (d) emulsifying agent to form a mixture of ingredients; (2) reacting the mixture of ingredients at a temperature sufficient to obtain a crude reaction mixture comprising ingredients, reaction products and by-products; (3) removing at least a portion of the by-products from the crude reaction mixture; (4) further reacting the reaction products and ingredients from step (3) at a temperature and for a time sufficient to esterify at least about 50% of the hydroxyl groups of the first polyol; and (5) treating the resulting product of step (4) with an aqueous solution comprising lipase at a pH sufficient to form soaps from the fatty acid chains of the esterified second polyol and by-products.
In accordance with another aspect of the present invention there is provided batch and continuous processes for synthesizing polyol fatty acid polyesters comprising the steps of: (1) mixing ingredients comprising (a) unesterified first polyol having hy
Howie John Keeney
Trout James Earl
Clark Karen F.
Hemm Erich D.
Jones Melody A.
Prats Francisco
The Procter & Gamble Co.
LandOfFree
Processes for synthesis and purification of nondigestible fats does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Processes for synthesis and purification of nondigestible fats, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for synthesis and purification of nondigestible fats will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3001679