Processes for producing optically active...

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S363000

Reexamination Certificate

active

06528686

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to processes for producing 2-amino-1-phenylethanol derivatives and optically active enantiomers thereof which are important intermediates for synthesis of (R,R)-1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivatives. The present invention further relates to processes for producing the (R,R)-1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivatives which are useful as medical compounds or intermediate products thereof.
BACKGROUND OF THE INVENTION
As anti-obesity agents or anti-diabetic agents belonging to a new category of agents without using insulin, 1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivatives are noted since the derivatives act selectively on a &bgr;
3
-receptor in vivo, thus having extremely low side effects. Pharmacological studies on the 1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivatives have revealed that the &bgr;
3
-action substantially depends on (R,R)-form thereof (see J. Med. Chem., 35, 3081 (1992), and U.S. Pat. No. 5,061,727). For example, the above-mentioned U.S. Patent discloses that an (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylic acid disodium salt has a higher activity than the corresponding (S,S)-form by a factor of 47.
For the production of an optically active 1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivative, there is known an optical resolution of a racemic form or a racemate, or an asymmetric synthesis.
For example, Japanese Patent Application Laid-open No. 320153/1993 (JP-A-5-320153) corresponding to the above mentioned U.S. Pat. Nos. 5,061,727, 5,106,867 and Japanese Patent Application Laid-open No. 18340/1983 (JP-A-58-18340) disclose a method of producing an (R,R)-1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivative which comprises (1) allowing a racemic phenylethanol derivative to react with a phenylacetone derivative and a reducing agent such as sodium cyanoborohydride to produce a mixture of four species of optical isomers of a 1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivative, (2) isolating and removing an (R,S)-isomer and an (S,R)-isomer from the mixture, and (3) optically resoluting an (R,R)-isomer and an (S,S)-isomer by a diastereomer method. According to the method, however, it is necessary to isolate and purify the only (R,R)-isomer from a mixture of the four species of optical isomers, therefore, the processes are complicated and the yield is decreased. Further, since large quantities of raw materials are required, the method is also disadvantageous in economical factors.
The U.S. Patents and the Journal of Medicinal Chemistry as mentioned above disclose a method allowing an (R)-3-chlorostyrene oxide derivative to react with an (R)-1-methyl-2-phenylethylamine derivative. The (R)-1-methyl-2-phenylethylamine derivative used as a raw material or reactant in the method, however, has a strong antihypnotic or arousal action and it requires a particular attention when handled, therefore is not suited for a use in commercial production. Further, a lot of steps or processes are required to obtain the above-mentioned (R)-1-methyl-2-phenylethylamine derivative. For example, the (R)-methyl-2-phenylethylamine derivative is prepared from L-DOPA through six steps, namely, introduction of a protective group into an amino group, esterification, reduction of the resulting ester, converting a hydroxyl group to a mesyloxy group, deprotection of the protective group and reduction.
On the other hand, as a method of producing an optically active 2-amino-1-phenylethanol derivative used as a raw material or a reactant for the 1-phenyl-2-[(2-phenyl-1-alkylethyl, amino]ethanol derivative in the present invention, there is known a method of optical resolution of a corresponding racemic form with the use of an optically resoluting agent. Japanese Patent Application Laid-open No. 9979/1989 (JP-A-64-9979) [Japanese Patent Publication No. 48791/1992 (JP-B-4-48791)], for instance, discloses a method of optically resoluting a racemic 2-amino-1-(3-chlorophenyl)ethanol with N-(t-butoxycarbonyl)-D-alanine to obtain an optically active (R)-form.
Further, Japanese Patent Application Laid-open No. 85247/1990 (JP-A-2-85247) discloses a method of optically resoluting a racemic 2-amino-1-(4-chlorophenyl)ethanol with using D-tartaric acid. Moreover, Journal of Japan Chemical Society, 1985, (5), pp. 910 to 913 discloses a method of optically resoluting a racemic 2-amino-1-phenylethanol with employing 3-aminobenzoic acid as a optically resoluting agent.
According to these methods, however, the object optically active 2-amino-1-phenylethanol derivative can not be produced expediently and efficiently since the racemic 2-amino-1-phenylethanol derivative to be subjected to the optical resolution can not be obtained in a simple and easy manner with good yield.
For instance, as a method of producing the 2-amino-1-phenylethanol derivative, a method of reducing a nitrogen-containing compound, and a method utilizing an addition reaction of ammonia are known.
As examples of the method of reducing a nitrogen-containing compound, there are known (a) a method of reducing mandelonitrile [see J. Org. Chem., 45 (14), 2785 (1980), Japanese Patent Application Laid-open No. 27/1971 (JP-A-46-27) and the like], (b) a method of reducing mandelic acid amide [refer to J. Appl. Chem., 1 (1951), 469]and (c) a method of reducing a nitro compound [see Coll. Czech. Chem. Comm., 43 (7), 1917 (1978)].
In the method (a), however, since mandelonitrile is instable, the hydroxyl group is required to be protected to obtain the object compound with high yield. Further, the reaction is conducted in the presence of a great amount of a reducing agent such as LiAlH
4
and NaBH
4
and an activating catalyst, thus the method is disadvantageous in economical factors and requires attention to be handled. Moreover, the purity of the obtained 2-amino-1-phenylethanol derivative is low of about 95%. In the methods (b) and (c), since a large quantity of LiAlH
4
and the like is used as the reducing agent, there are problems similar thereto. According to the method (c) where nitromethane is employed as a solvent it is highly dangerous and needs a sufficient care when handled.
As the method utilizing an addition reaction of ammonia, there is known (d) a method of allowing an epoxy compound to react with ammonia [see Syn. Com., 3 (3), 177, (1973), and (e) a method of allowing a halohydrin compound to react with ammonia [refer Indian. J. Chem., SECT. B, 31B, 821 (1992)]. Although the reaction procedures are expedient, in these methods, however, a 1-amino-2-phenylethanol derivative as a position isomer of the 2-amino-1-phenylethanol derivative is liable to be by-produced. The position-isomer can hardly be removed by an isolating and purifying process generally used such as distillation, recrystallization and extraction, therefore, complicated procedures such as column purification are required.
On the other hand, a method of obtaining an optically active 2-amino-1-phenylethanol with the use of a microorganism is known. That is, Chemistry Express, 4, 9, 621 to 624 (1989) discloses microorganisms belonging to the genus Staphylococcus, the genus Micrococcus, the genus Rhodococcus and the genus Neisseria produce, respectively, an optically active 2-amino-1-phenylethanol from 2-amino-1-phenylethanol and (&agr;-aminoacetophenone.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a process for efficiently producing an optically active (R)-2-amino-1-phenylethanol derivative, which is useful for the efficient production of an (R,R)-1-phenyl-2-[(2-phenyl-1-alkylethyl)amino]ethanol derivative with a good yield, with high yield and optical purity.
It is another object of the present invention to provide a process of producing efficiently the optically active compound, which is u

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes for producing optically active... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes for producing optically active..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for producing optically active... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3006235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.