Processes for producing 1,6-hexanediols

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S852000, C568S909000, C568S914000

Reexamination Certificate

active

06187970

ABSTRACT:

BRIEF SUMMARY OF THE INVENTION
1. Technical Field
This invention relates in part to processes for selectively producing one or more substituted or unsubstituted 1,6-hexanediols. This invention also relates in part to reaction mixtures containing one or more substituted or unsubstituted 1,6-hexanediols as the desired product(s) of reaction.
2. Background of the Invention
1,6-Hexanediol is a valuable intermediate which is useful, for example, in the production of polyesters. The processes currently used to produce 1,6-hexanediols have various disadvantages. For example, the starting materials used to produce 1,6-hexanediols are relatively expensive. In addition, the selectivity to 1,6-hexanediols in prior art processes has been low. Accordingly, it would be desirable to selectively produce 1,6-hexanediols from a relatively inexpensive starting material and by a process which can be employed commercially.
DISCLOSURE OF THE INVENTION
It has been discovered that alcohols possessing internal olefinic unsaturation can be converted to linear diols. In particular, it has been surprisingly discovered that penten-1-ols, e.g., 3-penten-1-ols, can be converted to linear 1,6-hexanediols, e.g., 1,6-hexanediol, by employing catalysts having reductive hydroformylation/isomerization capabilities.
This invention relates to processes for producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise subjecting one or more substituted or unsubstituted penten-1-ols to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce said one or more substituted or unsubstituted 1,6-hexanediols.
This invention also relates to processes for producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise subjecting one or more substituted or unsubstituted pentenals to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce said one or more substituted or unsubstituted 1,6-hexanediols.
This invention further relates to processes for producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise: (a) subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce one or more substituted or unsubstituted penten-1-ols; and (b) subjecting said one or more substituted or unsubstituted penten-1-ols to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce said one or more substituted or unsubstituted 1,6-hexanediols. The reductive hydroformylation reaction conditions in steps (a) and (b) may be the same or different and the reductive hydroformylation catalysts in steps (a) and (b) may be the same or different.
This invention yet further relates to processes for selectively producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise: (a) subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, to hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, and at an alkadiene partial pressure and/or a carbon monoxide partial pressure sufficient to produce one or more substituted or unsubstituted pentenals; (b) subjecting said one or more substituted or unsubstituted pentenals to hydrogenation in the presence of a hydrogenation catalyst to produce one or more substituted or unsubstituted penten-1-ols; and (c) subjecting said one or more substituted or unsubstituted penten-1-ols to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce said one or more substituted or unsubstituted 1,6-hexanediols. In a preferred embodiment, the step (a) hydroformylation is conducted at an alkadiene partial pressure and/or a carbon monoxide partial pressure sufficient to prevent or minimize derivatization, e.g., isomerization and/or hydrogenation, of substituted or unsubstituted 3-pentenals. The hydroformylation reaction conditions in step (a), the hydrogenation reaction conditions in step (b) and the reductive hydroformylation reaction conditions in step (c) may be the same or different. The hydroformylation catalyst in step (a), the hydrogenation catalyst in step (b) and the reductive hydroformylation catalyst in step (c) may be the same or different.
This invention also relates to processes for selectively producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise: (a) subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce one or more substituted or unsubstituted penten-1-ols; (b) subjecting said one or more substituted or unsubstituted penten-1-ols to hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce one or more substituted or unsubstituted 6-hydroxyhexanals; and (c) subjecting said one or more substituted or unsubstituted 6-hydroxyhexanals to hydrogenation in the presence of a hydrogenation catalyst to produce said one or more substituted or unsubstituted 1,6-hexanediols. The reductive hydroformylation reaction conditions in step (a), the hydroformylation reaction conditions in step (b) and the hydrogenation reaction conditions in step (c) may be the same or different. The reductive hydroformylation catalyst in step (a), the hydroformylation catalyst in step (b) and the hydrogenation catalyst in step (c) may be the same or different.
This invention further relates to processes for selectively producing one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol, which comprise: (a) subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, to hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, and at an alkadiene partial pressure and/or a carbon monoxide partial pressure sufficient to produce one or more substituted or unsubstituted pentenals; (b) subjecting said one or more substituted or unsubstituted pentenals to hydrogenation in the presence of a hydrogenation catalyst to produce one or more substituted or unsubstituted penten-1-ols; (c) subjecting said one or more substituted or unsubstituted penten-1-ols to hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce one or more substituted or unsubstituted 6-hydroxyhexanals; and (d) subjecting said one or more substituted or unsubstituted 6-hydroxyhexanals to hydrogenation in the presence of a hydrogenation catalyst to produce said one or more substituted or unsubstituted 1,6-hexanediols. In a preferred embodiment, the step (a) hydroformylation is conducted at an alkadiene partial pressure and/or a carbon monoxide partial pressure sufficient to prevent or minimize derivatization, e.g., isomerization and/or hydrogenation, of substituted or unsubstituted 3-pentenals. The hydroformylation reaction conditions in steps (a) and (c) and the hydrogenation reaction conditions in steps (b) and (d) may be the same or different. The hydroformylation catalysts in steps (a) and (c) and the hydrogenation catalysts in steps (b) and (d) may be the same or different.
This invention yet further relates in part to a process for producing a batchwise or continuously generated reaction mixture comprising:
(1) one or more substituted or unsubstituted 1,6-hexanediols, e.g., 1,6-hexanediol;
(2) one or more substituted or un

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes for producing 1,6-hexanediols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes for producing 1,6-hexanediols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for producing 1,6-hexanediols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604218

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.