Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...
Reexamination Certificate
1997-12-31
2001-05-22
Wu, David W. (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Processes of preparing a desired or intentional composition...
C524S102000, C524S186000, C524S236000, C524S241000, C524S254000, C524S255000, C524S256000, C524S258000, C525S331800
Reexamination Certificate
active
06235819
ABSTRACT:
TECHNICAL FIELD
The present invention is directed toward amine scavengers that are particularly useful in polymeric compositions. More specifically, the present invention is directed toward cyanurate or triazine compounds, and their use within polymeric compositions as amine scavengers.
BACKGROUND OF THE INVENTION
In the art of forming and compounding polymeric compositions, impurities can be introduced into the polymeric compositions. These impurities can include secondary and tertiary amines, and can stem from contamination, the use of amine-containing initiators, the presence of amine functionalized polymers, from various compounding additives such as accelerators, or from certain short-stopping reagents used in emulsion polymerization.
While it is known that amines will react with isocyanates, their use in polymeric compositions has not been found to be suitable. The literature has disclosed the use of several methods for trapping secondary amines within rubber compositions. These methods include reacting the secondary amines with isocyanates, or by acetylation with anhydrides. Such methods, however, have been unacceptable inasmuch as the use of anhydrides within rubber compositions results in poor distribution of the inhibitors, and the use of isocyanates tends to react with other rubber additives. Other known methods for removing amines from rubber compositions include the addition of aldehydes, as well as the addition of mono-functional or multi-functional isothiocyanates.
Often, however, the reactants that are added to rubber compositions for scavenging amine impurities have a deleterious impact on the rubber composition and its intended purpose. There is, therefore, a need for amine reactants that do not adversely impact the rubber compositions to which they are added.
SUMMARY OF INVENTION
It is, therefore, an object of the present invention to provide a process for increasing the purity of polymeric compositions by scavenging amines therein.
It is another object of the present invention to provide a process for increasing the purity of vulcanizable compositions by scavenging amines therein.
It is still another object of the present invention to provide a process for increasing the purity of rubber compounds that contain accelerators based on secondary amines.
It is yet another object of the present invention to provide a process for increasing the purity of rubber compounds that contain polymers having amino substituents.
It is still a further object of the present invention to provide novel amine scavengers that are particularly useful in polymeric compositions.
It is yet another object of the present invention to provide amine scavengers that are particularly useful in vulcanizable compositions of matter.
It is another object of the present invention to provide tire treadstocks and sidewall stocks having increased purity.
It is a further object of the present invention to provide a process for increasing the purity of polymeric and vulcanizable compositions of matter by scavenging amines therein without substantially affecting the composition or the ultimate use of the composition such as in a pneumatic tire.
At least one or more of the foregoing objects, together with the advantages thereof over the known art relating to processes for purifying rubber compositions, that shall become apparent from the specification which follows, are accomplished by the invention as hereinafter described and claimed.
In general the present invention provides a method for scavenging residual amines within polymeric compositions of matter comprising the step of:
adding to a polymeric composition of matter at least one triazine compound, wherein said triazine compound is defined according to the formula:
where X is selected from the group consisting of hydrogen, halides, amines, and organic groups having from 1 to about 20 carbon atoms, Y is selected from the group consisting of halides, alkoxy derivatives, amine derivatives, aryloxy derivatives, and urea derivatives, with the proviso that the substituent Y is displacable by a reaction with a secondary amine, and Z is selected from the group consisting of alkoxy derivatives, amino derivatives, aryloxy derivatives, and urea derivatives, with the proviso that the substituent Z is displacable by a reaction with a secondary amine.
The present invention also provides a method of scavenging amines within a polymeric composition of matter comprising the step of adding to a polymeric composition of matter at least one triazine compound, wherein the triazine compound has at least one substituent selected from the group of substituents consisting of Cl, Br, O-alkyls, O-aryls, N-alkyls, N-aryls, N-carboxamides, and ureas; and wherein the triazine compound has at least another substituent selected from the group of substituents consisting of O-alkyls, O-aryls, N-alkyls, N-aryls, N-carboxamides, and ureas.
PREFERRED EMBODIMENT FOR CARRYING OUT THE INVENTION
Polymeric compositions that contain accelerators based on secondary amines, those that are short-stopped with an amine, those that contain polymers containing amino substituents, or those that have been initiated with amine containing initiators, may contain small amounts of impurities such as secondary amines.
It has now been found that the addition of triazines to polymeric compositions is highly effective in reducing the quantities of amine impurities therein. Surprisingly, the addition of these triazine compounds does not lead to deleterious effects upon the polymeric composition, especially vulcanizable rubber compositions. Accordingly, the present invention is directed toward a process for reducing residual amines within polymeric compositions, as well as novel triazine scavenger compounds that have been found to be particularly useful in this process.
The process of the present invention involves the addition of triazines to polymeric compositions of matter. It is here noted that the use of the term triazine may be used interchangeably throughout this specification with the term cyanurate.
A variety of triazines, e.g., aryloxy triazines or alkoxy triazines, and related derivatives, are believed to be useful for practice of this invention. A general structure for the triazines of this invention can be represented by the following formula
The substituent X is a non-specific substituent, meaning that its selection is not critical to the present invention so long as the substituent chosen will not deleteriously impact the composition to which the compounds of the present invention are added. As those skilled in the art will appreciate, X generally can include a hydrogen atom, an amine, an organic group, or a halide. To the extent that X is nonspecific, X can include any substituent that is specifically defined for the substituents Y and Z as defined hereinbelow.
The organic groups may, of course, contain hetero atoms such as oxygen, sulfur, or nitrogen. Preferably, the organic groups should include those having less than about 20 carbon atoms, more preferably those having from 1 to about 12 carbon atoms, and even more preferably those having from about 2 to about 8 carbon atoms. More specifically, the groups can be aliphatic, cyclic or aromatic. The aliphatic groups may be saturated or unsaturated and include alkyls, alkenyls, and alkynyls. As a non-limiting example, those skilled in the art will recognize that the above description encompasses groups including primary and secondary amine groups, carboxyl groups, alkoxy groups, and urea groups.
The substituent Y is more specifically defined because in accordance with the present invention the substituent Y must be displaced by a reaction with a secondary amine. Accordingly, as those skilled in the art will appreciate, the substituent Y can include a halide, especially chlorine or bromine, as well as, for example, groups based on O-alkyls, O-aryls, N-alkyls, N-aryls, N-carboxamides, and ureas. Those skilled in the art will also appreciate that any organic substituent having a hetero atom, such as oxygen, nitrogen, or sulfur that is t
Hilton Ashley S.
Lawson David F.
Quirk Roderic P.
Schreffler John R.
Bridgestone Corporation
Burleson David G.
Reginelli Arthur M.
Wu David W.
Zalukaeva Tanya
LandOfFree
Process to scavenge amines in polymeric compounds by... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process to scavenge amines in polymeric compounds by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process to scavenge amines in polymeric compounds by... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2499578