Process of using sodium silicate to create fire retardant...

Stock material or miscellaneous articles – Composite – Of carbohydrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S297000, C427S397800, C427S419200, C427S419700, C427S439000, C427S440000

Reexamination Certificate

active

06303234

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The purpose of this invention is to provide 1) sodium silicate (water glass) impregnated wood materials introducing a fire retardant property to wood products, 2) water glass impregnation of other materials, such as paper and cloth, in such a way as to allow their intended functions while reducing the risk of flammability, and 3) wood products treated with sodium silicate can be used simultaneously to impart flame resistant properties to wood and to cause the wood to become termite resistant, providing an environmentally friendly method for long term termite control.
Liquid sodium silicate (water glass), applied to the surface of various products, can impart fire retardant properties. In the presence of fire, the sodium silicate will form foam-like crystals that help to provide an insulating barrier between the product and the flame, and will thus slow down the spread of fire. Wood and other products will become less flammable when treated with sodium silicate. The foam-like product appears to be more than a mere change in form of the sodium silicate. It is believed that the foam-like material is the product of a chemical reaction, and also imparts fire retardant properties to the material treated with sodium substrate.
It is a further purpose of the invention to provide a polymerized form of sodium silicate that is water insoluble: As a result of the application of heat, the sodium silicate undergoes dehydration (loss of water) and a process of polymerization that forms increasingly larger moieties of (SiO
4
)
n
−1
while still maintaining an overall charge of −1 that forms an association with the free sodium. As the material polymerizes the resultant material increases in size to the point that it is no longer able to dissolve in water, thus becoming insoluble.
Cellulosic materials including dimension lumber, plywood, particle board, wafer board, paper, and fabric were treated with sodium silicate (Na
2
O.SiO
2
) in concentrations ranging from 400-0.04 g Na
2
O.SiO
2
/kg water and the surfaces of selected samples were further treated with silicon monoxide (SiO), applied in a molecular layer by vapor deposition. Tests were conducted to determine the effectiveness of these materials in terms of fire resistance, durability, duration of effectiveness, and moisture resistance.
Sodium silicate treated samples were further treated by the deposition of a molecular coating of silicon monoxide by vapor deposition. Samples treated by this technique were found to be completely moisture resistant. The combined application of sodium silicate and silicon monoxide was found to provide a fire retardant product that is moisture resistant and decomposition resistant, and therefore effective for internal and external uses. Sodium silicate coated with a thin layer of silicon monoxide does appear to provide an effective fire retardant material.
The purpose of this invention is also to provide 1) sodium silicate (water glass) impregnated wood materials will introduce a fire retardant property to wood, paper and cloth products, 2) the chemical and physical alternations of wood and other samples impregnated with sodium silicate, 3) the effects of moisture, air, temperature fluctuations, and weathering on sodium silicate treated samples, and 4) silicon oxide applied as a micro-layer to the surface of sodium silicate treated materials as an effective moisture barrier and guard against long term deterioration.
Liquid sodium silicate (water glass), applied to various products, can impart fire retardant properties. In the presence of fire, the sodium silicate will form foam-like crystals that help to provide an insulating barrier between the product and the flame, and will thus slow down the spread of fire.
In addition the sodium silicate penetrates the interiors of porous materials altering cellular structures and forming many microscopically thin glassy layers. A micro-layer of silicon oxide applied to the surface of a sodium silicate-treated material will make the material waterproof as well as prevent long term deterioration.
This invention provides impressive fire retardant properties for sodium silicate treated samples that would make this material all that would be desired in a fire retardant—highly effective, water insoluble, providing strengthening properties, and economical.
A further purpose of this study is to apply sodium silicate solutions to various samples for the purpose of evaluating the fire retardant properties of the resultant products. In the presence of fire, it is anticipated that the presence of non-combustible sodium silicate will render the cellulosic material less available to the flame and will retard vaporization of the cellulosic material; also sodium silicate is expected to form foam-like crystals that help to provide an insulating barrier between the product and the flame which will further separate the sample and the fire source, helping to reduce the temperature of the sample thus slowing down the spread of fire.
Sodium silicate is defined as water soluble (Condensed Chemical Dictionary, 1971). However, during pilot studies, it was noticed that as sodium silicate is exposed to large amounts of heat, parts of sodium silicate buildup would foam up, and this foam was water insoluble. This raised questions about the effect that excessive heating was having on sodium silicate. It was also noticed that when sodium silicate treated wood was subjected to heat from a flame torch, the flame was an orange/yellow color, as opposed to the light yellow traditional color of untreated wood burning. Two kinds of experiments were devised to examine the changes in sodium silicate that occur during exposure to intense flame and heat in the presence of wood. The first test was to examine water solubility versus temperature. The solubility of sodium silicate was measured after being exposed to different temperatures. The second test utilized an x-ray photoelectron spectrometer to examine the chemical composition of foamed sodium silicate byproducts.
Sodium silicate was expected to penetrate the interior of porous materials, altering cellular structures and forming many microscopically thin glassy layers. It is anticipated that the presence of sodium silicate was evident microscopically, and that the distribution patterns and interaction with cellular structures were discernible.
Products treated with sodium silicate were tested for durability, strength, and ability to withstand the effects of prolonged exposure to air, moisture, and weathering.
2. Description of the Related Art
Throughout history, house fires have been a major threat to the well-being of many families. According to the National fire Protection Association, in the United States in 1995 there were 600,000 structural fires in homes and businesses, causing approximately $7,620,000,000 in damages to property. The average loss per fire was $12,700. Over 30,000 people were injured in fires; there were 4585 deaths (12-13 per day) due to fire.
The possibility of awakening to the spectre of threatening flames strikes fear in the hearts of many, including this author, who was awakened to the acrid smell of smoke early on the morning of Jan. 26, 1995. An electrical fire in the garage had spread to nearby materials and had become a raging inferno before being discovered by a family member. The damage in this fire approached $150,000, but fortunately the effects on health were limited to a minor case of smoke inhalation. Unmeasured is the lingering fear, the memories of billowing smoke and fire, and the uneasy knowledge that it could and just might happen again, and that next time the damages might not be limited to property.
In spite of years of research, the United States remains the leader among developed nations in the number of fires occurring per year, the number of injuries and lives lost to fire, and total dollar value of property losses due to fire. The injuries and losses of life due to fire are highest among the elderly (more than double the average population),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process of using sodium silicate to create fire retardant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process of using sodium silicate to create fire retardant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of using sodium silicate to create fire retardant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598052

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.