Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Process of making radiation-sensitive product
Reexamination Certificate
1999-12-16
2001-06-12
Chapman, Mark (Department: 1753)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Process of making radiation-sensitive product
C430S131000, C430S132000, C430S133000, C430S134000, C427S421100, C427S424000, C427S425000
Reexamination Certificate
active
06245475
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to a method of forming a photoreceptor by spray coating one or more layers of the photoreceptor using ink jet nozzles. More in particular, the invention relates to a method of forming one or more layers of a photoreceptor containing polymer binder by spray forming the layers with ink jet nozzles, and to a printing machine containing a photoreceptor so formed.
2. Description of Related Art
Manufacturing of organic photoconductor drums used in current laser or LED printers and copiers is accomplished almost exclusively by dip coating. Spray coating is also used, albeit on a limited basis, for example in forming Broad Organic Spectrum (BOS) photoreceptors.
U.S. Pat. No. 5,906,904, incorporated by reference herein in its entirety, describes an electrophotographic imaging member. In describing the imaging member, it is indicated in this patent that each of the layers of the imaging member may be formed by conventional techniques such as spraying, dip coating, draw bar coating, gravure coating, roll coating, and the like.
Numerous problems are encountered in the operation of conventional spray or dip coating processes. In particular, material related difficulties are among the more challenging problems that need to be addressed.
In the manufacture of a multi-layer drum photoconductor (OPC) by dip coating, large volumes of coating solutions are required for application of each layer. The respective solutions are held in storage tanks and recirculated through cylindrical reservoirs in which the drum substrates are immersed. For the simultaneous coating of multiple drums in a single operation, multiple reservoirs are fabricated in rectangular or circular arrays for the application of a single layer at a dip coating process station, it is typical to have a total volume of 20 to 100 gallons of coating solution recirculating continuously through the coating fluid delivery system. This is problematic with respect to maintaining inventory of a large volume of expensive materials, with risk of loss due to contamination, limited shelf life for a majority of coating formulations, and difficulty in maintaining steady state composition of the coating solution due to solvent evaporation.
Dip coating also has other operational problems. The process requires a bottom edge wiping process step for each layer coating. This step produces additional solvent vapor emissions, a liquid solvent waste stream, and slows the process cycle time. Alternative end cleaning processes such as laser ablation also have associated problems. Furthermore, dip coating photoreceptor devices have a thickness taper, commonly known as sloping, at the upper end of the substrate where the coating process is initiated.
The use of air spray coating for manufacturing photoreceptors, and the recent development of rotary atomization spray coating for wide format OPC drums, also possess material related problems. Transfer efficiencies may be as low as 20%, resulting in excessive material consumption and solvent vapor emissions per unit of production. The droplet size distribution of spray atomizing devices is broad, and the arrival of droplets at a substrate surface is chaotic. This results in a non-homogeneous, i.e., grainy, coated layer on a microscopic scale, and a mottled coating appearance on a macroscopic scale. The spray patterns for both air spray and rotary spray coating are fan shaped, and the spray fan must be scanned beyond the end of the substrate in order to achieve a uniform coating along the full length of the substrate. This thus requires that the ends of the substrate be masked or that an edge wiping step be used (with the disadvantages described above). In addition, the substrate fixture and hardware and the interior of the coating chamber must be periodically cleaned, which cleaning operations are difficult to perform without increasing cycle time and producing waste streams and/or vapor emissions.
U.S. Pat. No. 5,550,618 underscores the problems associated with conventional spray coating techniques. It is indicated therein that coatings applied by spray coating are often uneven, and that coatings having an uneven thickness do not have uniform electrical properties, thereby degrading the print quality.
Conventional spray coating processes, including rotary atomization spray coating processes, do not use ink jet nozzles in the process.
SUMMARY OF THE INVENTION
What is desired is a coating process which can be retrofitted into existing manufacturing facilities, provides greater materials formulation latitude, precise layer thickness uniforming, and low waste emissions in order to enable production of higher quality photoreceptors and more environmentally favorable photoreceptor manufacturing.
These and other objects are achieved by the present invention relating to a process of forming photoreceptors by forming desired layers of the photoreceptor using small fluid jets or spray nozzles. An ink jet nozzle array would be a particularly suitable device for the deposition of coatings in droplet form.
The process of the invention is thus one in which an ink jet array or assembly of arrays is positioned to an orientation which enables complete and uniform coating of a substrate, in particular a cylindrical drum substrate. The deposition of the coating can be precisely controlled so as to be applied only to the portion of the substrate surface which is intended to be coated. Thus, the object of the invention, as well as additional objects, are achieved by the present invention relating to a method of forming a photoreceptor or other printing machine roll comprising spray forming one or more polymer-based layers of the photoreceptor or roll by spraying the coating through ink jet nozzles onto a substrate, and subsequently drying the layer so spray formed. The invention also relates to a printing machine containing the photoreceptor and/or roll formed by the foregoing method.
REFERENCES:
patent: 5202214 (1993-04-01), Kawamorita et al.
patent: 5550618 (1996-08-01), Herbert et al.
patent: 5885661 (1999-03-01), Batchelder
patent: 5906904 (1999-05-01), Parikh et al.
patent: 2-272567 (1990-11-01), None
patent: 5-181290 (1993-07-01), None
Cai Jian
Dinh Kenny Tuan
Dunham Robert F.
Hammond John M.
Janezic Roger T.
Chapman Mark
Oliff & Berridg,e PLC
Xerox Corporation
LandOfFree
Process of spray forming photoreceptors with ink nozzles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process of spray forming photoreceptors with ink nozzles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of spray forming photoreceptors with ink nozzles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2437242