Process of rheology modification of polymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06552129

ABSTRACT:

This invention relates to coupling of polyolefins, more specifically coupling of polyolefins using insertion into carbon hydrogen (C—H) bonds.
As used herein, the term “rheology modification” means change in melt viscosity of a polymer as determined by dynamic mechanical spectroscopy. Preferably the melt strength increases while maintaining the high shear viscosity (that is viscosity measured at a shear of 100 rad/sec by DMS) so that a polymer exhibits more resistance to stretching during elongation of molten polymer at low shear conditions (that is viscosity measured at a shear of 0.1 rad/sec by DMS) and does not sacrifice the output at high shear conditions. An increase in melt strength is typically observed when long chain branches or similar structures are introduced into a polymer.
Polyolefins are frequently rheology modified using nonselective chemistries involving free radicals generated for instance using peroxides or high energy radiation. However, chemistries involving free radical generation at elevated temperatures also degrade the molecular weight, especially in polymers containing tertiary hydrogen such as polystyrene, polypropylene, polyethylene copolymers etc. The reaction of polypropylene with peroxides and pentaerythritol triacrylate is reported by Wang et al., in Journal of Applied Polymer Science, Vol. 61, 1395-1404 (1996). They teach that rheology modification of isotactic polypropylene can be realized by free radical grafting of di- and tri-vinyl compounds onto polypropylene. However, this approach does not work well in actual practice as the higher rate of chain scission tends to dominate the limited amount of chain coupling that takes place. This occurs because chain scission is an intra-molecular process following first order kinetics, while coupling is an inter-molecular process with kinetics that are minimally second order. Chain scission results in lower molecular weight and higher melt flow rate than would be observed were the branching not accompanied by scission. Because scission is not uniform, molecular weight distribution increases as lower molecular weight polymer chains referred to in the art as “tails” are formed.
The teachings of U.S. Pat. Nos. 3,058,944; 3,336,268; and 3,530,108 include the reaction of certain poly(sulfonyl azide) compounds with isotactic polypropylene or other polyolefins by nitrene insertion into C—H bonds. The product reported in U.S. Pat. No. 3,058,944 is crosslinked. The product reported in U.S. Pat. No. 3,530,108 is foamed and cured with cycloalkane-di(sulfonyl azide) of a given formula. In U.S. Pat. No. 3,336,268 the resulting reaction products are referred to as“bridged polymers” because polymer chains are “bridged” with sulfonamide bridges. The disclosed process includes a mixing step such as milling or mixing of the sulfonylazide and polymer in solution or dispersion then a heating step where the temperature is sufficient to decompose the sulfonylazide (100° C. to 225° depending on the azide decomposition temperature). The starting polypropylene polymer for the claimed process has a molecular weight of at least about 275,000. Blends taught in U.S. Pat. No. 3,336,268 have up to about 25 percent ethylene propylene elastomer.
U.S. Pat. No. 3,631,182 taught the use of azido formate for crosslinking polyolefins. U.S. Pat. No. 3,341,418 taught the use of sulfonyl azide and azidoformate compounds to crosslink of thermoplastics material(PP (polypropylene), PS (polystyrene), PVC (poly(vinyl chloride)) and their blends with rubbers (polyisobutene, EPM, etc.).
Similarly, the teachings of Canadian patent 797,917 (family member of NL 6,503,188) include rheology modification using from about 0.001 to 0.075 weight percent polysulfonyl azide to modify homopolymer polyethylene and its blend with polyisobutylene.
Teachings of incorporating poly(sulfonyl azides) into polymers in these references are typically directed to mixing poly(sulfonyl azide) as a solid or in a solvent into a polymer. Disadvantageously, mixing solids often results in localized concentrations of azide which evidence themselves as gels, discoloration, for instance black specks, or uneven amounts of coupling. Using a solvent, however, requires an extra step of removing solvent and sometimes equipment adaptations for the removal and handling volatile chemicals.
It would be desirable to avoid dark specks, gels and other evidence of localized poly(sulfonyl azide) and to avoid removing or handling solvent yet to obtain polymers rheology modified rather than crosslinked (that is having less than about 10 percent gel as determined by xylene extraction specifically by ASTM 2765). Which polymers, in the case of high density polyethylene are desirably of narrow molecular weight distribution (MWD) (that is having most preferably less than about 3.0 Mw/Mn, and preferably density greater than 0.945 g/ml) advantageously made using single site, single site metallocene or single site constrained geometry catalysts (hereinafter HDPE of narrow MWD) which polymers advantageously have a combination of good processability as indicated by higher melt strength at a constant low shear viscosity e.g. 0.1 rad/sec measured by DMS, and higher toughness, tensile and/or elongation than a high density polyethylene of broader molecular weight distribution treated with sulfonyl azides according to the practice of the prior art using the same equivalents (stoichiometry) of coupling reactant to polymer higher toughness than that of the same starting material coupled or rheology modified using the same equivalents of a free radical coupling agent Desirably, the product would have better organoleptics than coupled broader MWD HDPE. Advantageously, compositions would have less undesirable odor than the same starting materials coupled or rheology modified using the same chemical equivalents of free radical generating agents. Preferably, a process of the invention would result in more consistent coupling than methods of coupling involving free radicals, that is use of the same reactants, amounts and conditions would result in consistent amounts of coupling or consistent (reproducible) property changes, especially consistent amounts of gel formation. Preferably, a process would be less subject to effects from the presence of oxygen than would a coupling or rheology modification involving agents which generate free radicals.
In the case of, medium and lower density polyethylene (that is polymers having a density of from about 0.94 g/cc to about 0.90 g/cc), which are advantageously copolymers of ethylene in which the percent comonomer is preferably about 0.5 to 5 mole percent comonomer based on total polymer as determined by ASTM 5017, the polymers would desirably show a combination of processability improved over the starting material with retention of toughness, low heat seal initiation temperature, low haze, high gloss or hot tack properties characteristic of the starting material.
In the case of elastomeric polymers containing ethylene repeating units in which the preferred comonomer content is about 5-25 mole percent, and preferably a density less than about 0.89 g/mL, it would be desirable to have a better mechanical properties such as elongation and tensile strength than would be achieved in the starting material or by coupling using the same chemical equivalents of free radical generating agent like a peroxide.
SUMMARY OF THE INVENTION
Polymers coupled by reaction with coupling agents according to the practice of the invention advantageously have at least one of these desirable properties and preferably have desirable combinations of these properties.
The invention includes a process of reacting a poly(sulfonyl azide) with a polymer comprising steps (a) forming a first admixture, hereinafter referred to as a concentrate, of a first amount of a first polymer or in a liquid which does not require removal from the polymer, hereinafter diluent, and a poly(sulfonyl azide); (b) then forming a second admixture of the first admixture with a second amount of at least one second polymer, hereinafter sec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process of rheology modification of polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process of rheology modification of polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of rheology modification of polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3111943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.