Plastic and nonmetallic article shaping or treating: processes – Optical article shaping or treating – Light polarizing article or holographic article
Reexamination Certificate
2001-08-17
2004-08-10
Tentoni, Leo B. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Optical article shaping or treating
Light polarizing article or holographic article
C264S001380, C264S001700, C264S494000, C264S496000
Reexamination Certificate
active
06773638
ABSTRACT:
The invention relates to a method of manufacturing a replica, which method includes the provision of a bondable resin composition between a mold and a substrate or a blank, carrying out a curing treatment and removing the replica thus manufactured from the mold, which replica comprises the substrate and the reproduction of the mold provided thereon. The invention also relates to a replica obtained by carrying out a UV light-initiated cationic polymerization.
Such a method is known per se from U.S. Pat. No. 4,890,905, filed in the name of the current applicant. The replication process employs a mold or a matrix having an accurately defined surface which is the negative of the desired optical profile of the replica. In the exact determination of the definition of the surface of the mold or matrix, the shrinkage of the synthetic resin of the replica must be taken into account. A small quantity of a liquid, curable synthetic resin composition is provided on the surface of the mold. The substrate, which may or may not be transparent to UV light, is subsequently pressed with the desired side against the mold, or conversely, as a result of which the synthetic resin spreads between the surface of the substrate and the surface of the mold. Said liquid, synthetic resin composition may be provided on the substrate instead of the mold. The synthetic resin mixture is cured and the substrate with the cured synthetic resin layer bonded thereto is removed from the mold. The free surface of the synthetic resin layer is the negative of the corresponding surface of the mold. The advantage of the replication process is that optical components, such as lenses having a complicated refractive surface, for example an aspherical surface, can be manufactured in a comparatively simple manner without subjecting the substrate to complex polishing treatments. A drawback of such a replication by means of polymerization is the occurrence of shrinkage. Particularly if the flow of the bondable resin composition is impeded by gelation or a substantial increase in viscosity, further polymerization will lead to the development of stresses or even to premature delamination. If the product is subsequently removed from the mold, as in the case of, in particular, a replication process, only a partial relaxation of the stresses takes place, particularly if the product formed is composed of a densely bonded polymeric network. Such a bonded polymeric network is desired, however, for the cohesion of the product formed.
Therefore, it is an object of the invention to provide a bondable resin composition which, if it is cured against a mold, exhibits as little relaxation as possible after it has been removed from the mold and hence represents, as accurately as possible, the shape of the mold.
Another object of the invention is to provide a method enabling a replica layer to be provided, either simultaneously or successively, on two sides of the substrate.
Yet another object of the invention is to provide a method of manufacturing a replica, which method employs a bondable resin composition which also features a high reaction rate and a reaction that can be controlled by UV radiation.
A still further object of the invention is to provide a method of manufacturing a replica, which method employs a bondable resin composition, the final product of which corresponds to the currently applicable quality requirements regarding transparency and hardness.
Another object of the invention is to provide a method of manufacturing a replica, wherein a bondable resin composition is employed whose viscosity is so low that it can be accurately dosed in the replica process without any problems.
The method mentioned in the opening paragraph is characterized in accordance with the invention in that the curing treatment is a UV light-initiated cationic polymerization, the resin composition used being a compound comprising at least two cationically polymerizable cyclic ether groups, which only shows signs of gelation when at least 50% of the conversion that can be achieved in the mold under the relevant curing conditions has taken place.
By using such a bondable resin composition, the final product will be free of shrinkage stresses owing to the late gelation and comparatively small shrinkage. According to the applicant, the comparatively small degree of shrinkage can be attributed to the fact that the ring-opening process on which the current curing treatment is based does not cause new bonds, instead the number of bonds in the starting product and in the bonded product more or less correspond to each other, so that only a small degree of shrinkage takes place. Conversely, in the known (meth)acrylate compounds, as known from the above-mentioned U.S. Pat. No. 4,890,905, an increase in the number of new bonds is brought about, which explains the high degree of shrinkage. In addition, in the compounds in accordance with the invention, gelation and vitrification do not occur until a high conversion percentage is reached, so that the development of stresses starts at a much later stage. According to the current applicants, this surprising effect is brought about by a surprisingly large degree of chain transfer, as a result of which, at the beginning of the bonding reaction, predominantly comparatively small molecules are formed which do not form a gel until a high conversion percentage is reached. If the method in accordance with the invention is applied to replicate aspherical lenses of, for example, CD players, the application of the bondable composition in accordance with the invention will cause the shape of the mold to correspond substantially exactly to the product finally formed, as a result of which a much smaller shrinkage correction is necessary. As, in addition, after the product has been removed from the mold, less relaxation is necessary, it is to be expected that the amount of spread in the shape of the replicated lenses will be much smaller in the above-mentioned production process. The method in accordance with the invention can particularly suitably be used to replicate relief structures requiring an accurate (sub-micron) shape reproduction.
Compounds which can suitably be used in the method in accordance with the invention to manufacture a replica include a bondable resin composition of the following general formula:
wherein:
Y=—O—, —SO
2
—, —CH
2
—, —C(CF
3
)
2
—, —C(CH
3
)
2
—,
X=a halogen or CH
3
,
R
1
=—CH
2
—, —C(CH
3
)
2
—,
R
2
=—OCH
2
CH
2
—, —OCCH
3
HCH
2
—, —OCH
2
CCH
3
H—, —OCH
2
CHOHCH
2
—,
R
3
=H, C
n
H
2n+1
,
n=an integer≧1,
p=1-4,
m, a, b, c are each individual integers in the range from 0-4.
For the bondable resin composition use can also suitably be made of a compound selected from the group formed by 1,2,7,8-diepoxyoctane, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexanecarboxylate, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate and C
12
-C
14
-alkylglycidylether and the corresponding oxetane compounds thereof. An oxetane compound which can particularly suitably be used is 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene.
Dependent upon the viscosity of the selected bondable resin composition, it may be preferred, in certain embodiments, that the bondable resin composition additionally comprises a reactive diluent, which is preferably selected from the group formed by butylglycidylether, heptylglycidylether, octylglycidylether, allylglycidylether, p-t-butylphenylglycidylether, phenylglycidylether, cresylglycidylether, diglycidylether of 1,4-butanediol, diglycidylether of neopentylglycol, diglycidylether of polypropeneglycol, vinylcyclohexanedioxide, diglycidylether of recorcinol, diglycidylether of polypropeneglycol and diglycidylester of linoleic acid dimer and the corresponding oxetane compounds thereof.
The invention further relates to a replica obtained by carrying out a UV light-initiated cationic polymerization of a compound comprising at least two cationically polymerizable cyclic ether gr
Kloosterboer Johan George
Touwslager Fredericus Johannes
Verstegen Emile Johannes Karel
Belk Michael E.
Koninklijke Philips Electronics , N.V.
Tentoni Leo B.
LandOfFree
Process of making a replica does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process of making a replica, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of making a replica will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3354756