Process for vinyl chloride manufacture from ethane and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Halogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C570S216000, C570S226000, C570S227000, C570S228000, C570S230000

Reexamination Certificate

active

06797845

ABSTRACT:

This invention is directed to an apparatus and process for producing vinyl chloride monomer (VCM) from ethane and ethylene. Especially, this invention is directed to processes for producing vinyl chloride monomer where (1) significant quantities of both ethane and ethylene are present in input streams to the affiliated reactor and (2) hydrogen chloride in the reactor effluent is essentially fully recovered from the effluent in the first unit operation after the ethane/ethylene-to-vinyl reaction step or stage.
Vinyl chloride is a key material in modem commerce, and most processes deployed today derive vinyl chloride from 1,2-dichloroethane (EDC) where the EDC is first-derived from ethylene; so, from an abstracted reference frame, at least a three-operation overall system is used (ethylene from primary hydrocarbons, preponderantly via thermal cracking; ethylene to EDC; and then EDC to vinyl chloride). There is an inherent long-felt need in the industry to move toward an approach where vinyl chloride is derived more directly and economically from primary hydrocarbons without a need to first manufacture and purify ethylene, and the inherent economic benefit related to this vision has inspired a significant amount of development.
As a first general area of development, ethane-to-vinyl manufacture is of interest to a number of firms engaged in vinyl chloride production, and a significant amount of literature on the subject is now available. The following paragraphs overview key work related to the embodiments presented in the new developments of the present disclosure.
GB Patent 1,039,369 entitled “CATALYTIC CONVERSION OF ETHANE TO VINYL CHLORIDE” which issued on Aug. 17, 1966 describes use of multivalent metals, including those in the lanthanum series, in the production of vinyl chloride from ethane. The patent describes use of certain catalysts provided that “steam, available chlorine and oxygen are used in specific controlled ratios.” The described system operates at a temperature of between 500 and 750° C. Available chlorine in the described technology optionally includes 1,2-dichloroethane.
GB Patent 1,492,945 entitled “PROCESS FOR PRODUCING VINYL CHLORIDE” which issued on Nov. 23, 1977 to John Lynn Barclay discloses a process for the production of vinyl chloride using lanthanum in a copper-based ethane-to-vinyl catalyst. The authors describe that the lanthanum is present to favorably alter the volatility of copper at the elevated temperature required for operation. Examples show the advantage of excess hydrogen chloride in the affiliated reaction.
GB Patent 2,095,242 entitled “PREPARATION OF MONOCHLORO-OLEFINS BY OXYCHLORINATION OF ALKANES” which issued on Sep. 29, 1982 to David Roger Pyke and Robert Reid describes a “process for the production of monochlorinated olefins which comprises bringing into reaction at elevated temperature a gaseous mixture comprising an alkane, a source of chlorine and molecular oxygen in the presence of a . . . catalyst comprising metallic silver and/or a compound thereof and one or more compounds of manganese, cobalt or nickel”. The authors indicate that mixtures of ethane and ethylene can be fed to the catalyst. No examples are given and the specific advantages of ethane/ethylene mixtures are not disclosed.
GB Patent 2,101,596 entitled “OXYCHLORINATION OF ALKANES TO MONOCHLORINATED OLEFINS” which issued on Jan. 19, 1983 to Robert Reid and David Pyke describes a “process for the production of monochlorinated olefins which comprises bringing into reaction at elevated temperature a gaseous mixture comprising an alkane, a source of chlorine and molecular oxygen in the presence of a . . . catalyst comprising compounds of copper, manganese and titanium and is useful in the production of vinyl chloride from ethane.” The authors further describe that “the products of reaction are, in one embodiment, isolated and used as such or are, in one embodiment, recycled . . . to the reactor . . . to increase the yield of monochlorinated olefin.” The authors indicate that mixture of ethane and ethylene can be fed to the catalyst. No examples are given and the specific advantages of ethane/ethylene mixtures are not disclosed.
U.S. Pat. No. 3,629,354 entitled “HALOGENATED HYDROCARBONS” which issued on Dec. 21, 1971 to William Q. Beard, Jr. describes a process for the production of vinyl chloride and the coproduction of ethylene from ethane in the presence of hydrogen chloride and oxygen. Preferred catalysts are supported copper or iron. An example in this patent shows excess hydrogen chloride (HCl) relative to ethane in the reaction. A ratio of one ethane to four hydrogen chlorides is used to produce a steam containing 38.4 percent ethylene (which requires no HCl to produce) and 27.9 percent vinyl chloride (which requires only one mole of HCl per mole of vinyl chloride to produce).
U.S. Pat. No. 3,658,933 entitled “ETHYLENE FROM ETHANE, HALOGEN AND HYDROGEN HALIDE THROUGH FLUIDIZED CATALYST” which issued on Apr. 25, 1972 to William Q. Beard, Jr. describes a process for production of vinyl halides in a three reactor system combining an oxydehydrogenation reactor, an oxyhalogenation reactor and a dehydrohalogenation reactor. The authors show that (oxy)halodehydrogenation of ethane is, in some cases, enhanced by addition of both halogen and hydrogen halide. As in U.S. Pat. No. 3,629,354, the ethylene generated produces VCM through conventional oxyhalogenation (oxychlorination) and cracking. HCl produced in the cracking operation is returned to the halodehydrogenation reactor.
U.S. Pat. No. 3,658.934 entitled “ETHYLENE FROM ETHANE AND HALOGEN THROUGH FLUIDIZED RARE EARTH CATALYST” which issued on Apr. 25, 1972 to William Q. Beard, Jr. and U.S. Pat. No. 3,702,311 entitled “HALODEHYDROGENATION CATALYST” which issued on Nov. 7, 1972 to William Q. Beard, Jr. both describe a process for production of vinyl halides in a three reactor system combining a halodehydrogenation reactor, an oxyhalogenation reactor and a dehydrohalogenation reactor. The authors describe the halodehydrogenation of ethane to produce ethylene for subsequent conversion to EDC through oxyhalogenation (oxychlorination) with subsequent production of VCM through conventional thermal cracking. HCl produced in the cracking operation is returned to the oxyhalogenation reactor in '934 and to the halodehydrogenation reactor in '311. In the latter patent, the advantages of excess total chlorine, as both HCl and Cl
2
are shown to augment yield of desirable products.
U.S. Pat. No. 3,644,561 entitled “OXYDEHYDROGENATION OF ETHANE” which issued on Feb. 22, 1972 to William Q. Beard, Jr. and U.S. Pat. No. 3,769,362 entitled “OXYDEHYDROGENATION OF ETHANE” which issued on Oct. 30, 1973 to Williamn Q. Beard, Jr. relate closely to those above and describe processes for the oxydehydrogenation of ethane to ethylene in the presence of excess quantities of hydrogen halide. The patent describes a catalyst of either copper or iron halide further stabilized with rare earth halide where the ratio of rare earth to copper or iron halide is greater than 1:1. The patent describes use of a substantial excess of HCl relative to the molar amount of ethane fed, the HCl being unconsumed in the reaction.
U.S. Pat. No. 4,046,823 entitled “PROCESS FOR PRODUCING 1,2-DICHLOROETHANE” which issued on Sep. 6, 1977 to Ronnie D. Gordon and Charles M. Starks describes a process for the production of EDC where ethane and chlorine are reacted in the gas-phase over a copper containing catalyst.
U.S. Pat. No. 4,100,211 entitled “PROCESS FOR PREPARATION OF ETHYLENE AND VINYL CHLORIDE FROM ETHANE” which issued on Jul. 11, 1978 to Angelo Joseph Magistro describes regeneration of an iron catalyst for a process which reacts ethane into both ethylene and VCM in a mixture. This patent describes that a chlorine source is present from 0.1 mole to 10 moles per mole of ethane. In general, as the ratio of hydrogen chloride to ethane is increased, the yield of vinyl chloride and other chlorinated products also increases even as the yield of ethylene decreas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for vinyl chloride manufacture from ethane and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for vinyl chloride manufacture from ethane and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for vinyl chloride manufacture from ethane and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.