Abrading – Abrading process – Hollow work
Reexamination Certificate
2001-03-21
2003-06-10
Rose, Robert A. (Department: 3723)
Abrading
Abrading process
Hollow work
C451S036000, C134S008000
Reexamination Certificate
active
06575817
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for treating the interior of a hollow component for a high-temperature application, having a base body made from a base material, which component has a cavity with an internal coating.
International Patent Disclosure WO 97/05299 describes a product, in particular a gas-turbine component such as a turbine blade, with a metallic base body in which cooling channels are made. The metallic base body is in this case cast in hollow and thin-walled form from a material with a high temperature strength. This allows efficient cooling with a cooling medium, in particular cooling air, from the inside of the blade. The base body has at least one longitudinal cooling channel and a number of transverse cooling channels which branch off therefrom. On the hot-gas side of the blade, a coating is provided, which protects the metallic base body against oxidation and high-temperature corrosion from a hot gas flowing through the gas turbine. A further hot-gas-side coating of a ceramic material is applied to the corrosion-resistant layer in order to reduce the heat flux into the blade. The transverse cooling channels may be formed as perforations in the blade body or on a platform. The process results in a coating of the transverse channels without their cross section being narrowed in an uncontrolled manner. In the interior, the blade is provided with an enriching layer, which is configured as a diffusion layer, i.e. is formed as a result of a separately applied metal diffusing into the base body. It is preferable for aluminum, chromium and chromium-aluminum alloys to be used as a metal of this type.
European Patent EP 0 525 545 B1 describes a process for repairing a work piece made from a corroded superalloy or a corroded heat-resistant steel. In this case, corrosion products are present on the surface of the work piece, the surface being cleaned in order to remove a significant part of the corroded surface. Then, an aluminide layer is applied to the surface, extending sufficiently deeply for it to include substantially all the corrosion products that have remained after the cleaning. The aluminide layer is removed again together with the corrosion products. This process only relates to the repair of the outer surface of a work piece, in particular a gas turbine blade. The surface corrosion products are in this case removed by chemical and/or mechanical processes. Mechanical removal preferably takes places by abrasive blasting and chemical removal by the use of acid mixtures, hydrofluoric acid (aqueous solution of hydrogen fluoride) also being used.
U.S. Pat. No. 4,339,282 describes a method for removing aluminide coatings from a nickel superalloy which forms a turbine blade. The aluminide coating is removed by a chemical process using an acid mixture that substantially does not attack the nickel superalloy. The mixture used is a mixture of nitric acid (HNO
3
) and hydrochloric acid (HCl) with iron chloride (FeCl
3
) and copper sulfate (CuSO
4
). This process is preferably used for nickel superalloys bearing the designations U-700, IN-100, MAR M-200 and B1900.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a process for treating the interior of a hollow component that overcomes the above-mentioned disadvantages of the prior art methods of this general type, which treats an internal coating which is applied in the cavity.
With the foregoing and other objects in view there is provided, in accordance with the invention, a process for treating an interior of a hollow component used in high-temperature applications. The hollow component has a base body made from nickel-based alloys and/or cobalt-based alloys, the hollow component has a cavity and is lined by an internal coating. The method includes introducing a treating fluid flowing through the cavity, the treating fluid having solid particles with an abrasive action and the treating fluid abrades the internal coating. The treating fluid is an acidic, aqueous solution or an alkaline, aqueous solution.
In the process according to the invention, a treating fluid flows through the hollow cavity, and solid particles that have an abrasive action are added to the fluid, an internal coating in the cavity being abraded by the treating fluid.
This allows removal of the internal coating (stripping) without unacceptable attacks on the base material. The coating is removed by a mechanical process by the abrasive solid particles and the treating fluid can therefore have, if appropriate, only a weak chemical action with regard to the base material. As a result, the internal coating can be removed in a short time even if the aggressiveness and duration of action of the treating fluid are low, without significant attack on the base material. The process is particularly suitable for components that have been exposed to a high temperature, for example of over 1000° C., over a prolonged period of use. In a component of this type, the internal coating, which originally predominantly contained one substance, may, on account of thermally related transitions, have regions of a different chemical composition, in particular may have stable oxides. These oxides (fully oxidized regions of the internal coating) can be completely eliminated by the abrasive solid particles simultaneously with other regions of the internal coating which have not been fully oxidized. This allows recoating without problems and without flawed layer formations in the regions of oxide residues, so that the cavity can be recoated uniformly without undesirable changes to the cavity cross section, in particular without any obturation of the cavity. This is particularly advantageous especially for components that are exposed to high temperatures and are cooled by cooling fluid which is guided in cooling channels, since the process according to the invention ensures that flow can take place through the cooling channels after abrasion of the internal coating and recoating of the cooling channels.
Compared to purely chemical machining processes in which acid mixtures are used, with the process according to the invention it also becomes possible to treat an internal coating with regions which react differently to chemical reagents, in particular chemically resistant oxide regions and regions which can be eroded easily by a chemical process, for example with a high pure metallic content. With the process according to the invention, there is no need to use an aqueous solution of hydrogen fluoride (hydrofluoric acid), thus avoiding the risk of uncontrollable chemical intergranular attack on the base material.
Preferably, the treating fluid together with the solid particles with an abrasive action is passed in a circuit, with the result that the abrasive solid particles only need to be renewed when necessary. This considerably increases the economic viability of the overall process.
The treating fluid preferably contains an acidic, aqueous solution which is in particular free of hydrofluoric acid. The aqueous solution may in this case have an acid mixture of different acids as described, for example, in U.S. Pat. No. 4,339,282.
The treating fluid used may also be an alkaline, aqueous solution. It is also conceivable to use a gas that serves as a carrier gas for the abrasive solid particles as the treating fluid. However, the treating fluid is preferably a liquid or a mixture of different liquids that are selected according to the material of the internal coating and the base material. The abrasive solid particles used are particles that ensure sufficiently rapid abrasion of the most mechanically and/or chemically stable regions of the internal coating. The abrasive solid particles preferably are formed of corundum and/or silicon carbide. As a result, it is possible to reduce the required duration of action of a chemically active treating fluid. In particular, this leads to the removal of regions with a chemically resistant oxide, primarily aluminum oxide, within a short time. Particularly in
Greenberg Laurence A.
Locher Ralph E.
Rose Robert A.
Siemens Aktiengesellschaft
Stemer Werner H.
LandOfFree
Process for treating the interior of a hollow component does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for treating the interior of a hollow component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for treating the interior of a hollow component will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3135347