Process for thermal sludge disinfection

Liquid purification or separation – Processes – Including controlling process in response to a sensed condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S744000, C210S764000, C210S774000, C210S175000, C210S916000, C422S001000, C422S038000

Reexamination Certificate

active

06521133

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to thermal disinfection or pasteurization of liquid sludge, such as sewage sludge. Disinfection is the inactivation of pathogens to levels low enough so that the sludge can be beneficially used, e.g. for land application, without infection risks. Pasteurization is the disinfection of liquids by heat. Thermal disinfection requires maintenance of every sludge particle at a certain temperature T (above 50° C.) for a minimum time period t. The time period t depends on the temperature T, but should not be less than 30 minutes for sewage sludge, even if T is 70° C. or above. The Environmental Protection Agency (EPA) of the United States of America has published time-temperature relationships for thermal sludge treatment in Biosolids Rule 503. The present invention proposes a continuous flow system for thermal sludge disinfection complying with the EPA regulations and providing so-called Class A Biosolids.
The invention is related to various process combinations for thermal disinfection and stabilization of liquid sludge, e.g. thermal pre-pasteurization followed by anaerobic digestion, aerobic-thermophilic pre-pasteurization followed by anaerobic digestion, or temperature-phased thermophilic/mesophilic anaerobic digestion. In the latter process combination, the system according to the present invention is provided between the thermophilic and mesophilic digestion stages, whereby sludge heating occurs prior to or as part of the thermophilic digestion stage.
BACKGROUND OF THE INVENTION
Prior art knows batch systems for sludge pasteurization. Sludge is heated to a temperature T. After the temperature T is reached, batches of heated sludge are maintained in batch tanks at temperature T for a time period t. After the time period t has expired, sludge batches are removed from the tanks and cooled. If heat is provided continuously, a continuous sludge flow should be heated, e.g. in a heat exchanger. If a sludge flow is continuously heated, at least three batch tanks are required to provide the minimum residence time. While one tank is filled with heated sludge, the second tank is at rest providing the minimum batch detention time t, and the third tank is emptied. After every cycle with a duration of t, the tanks are exchanged: The filled first tank is now at rest, the second tank is now emptied, and the emptied third tank is now filled; and so on.
Such batch systems have several disadvantages. They require a complicated control system including at least 6 automatic valves and three level sensors. Synchronization of fill and draw pumps is difficult. There is an inherent danger of recontamination because each tank is periodically filled with not yet disinfected and therewith pathogen containing sludge. If only a little portion of the sludge in a tank, e.g. in a pipe connection or in the top of the tank, is not subject to the required temperature T for the required time t, the disinfection result might not be sufficient. While a tank is filled, air is displaced. The displaced air may not enter any of the other tanks because of the risk of recontamination. Therefore the air has to be vented to the atmosphere. This exhaust air is very odorous and requires deodorization. The airflow is the same as the sludge flow. Each tank must provide for the minimum detention time. The total volume of the three tanks is therefore V=3*t*q, whereby q is the sludge flow.
SUMMARY OF THE INVENTION
The present invention provides a pasteurization system with continuous flow. Sludge not only flows continuously through the heating means, but also through at least one chamber. These chamber or chambers provide for the required minimum residence time t at temperature T. No sludge particle is to leave the chambers before the minimum detention time t has expired. A single level sensor is sufficient to synchronize fill and draw pumps. Less automatic valves are required. Very little odorous air is displaced because the sludge level in the chamber is maintained almost constant and is changing only slowly dependent on the difference of the incoming and outgoing sludge flows.
A system according to the present invention comprises at least one chamber, however there can be more than one chambers, e.g. two or three chambers. The sludge from the sludge heater continually enters the first chamber. It can enter the chamber near its top or bottom. If it enters the first chamber at the top, it leaves the first chamber at the bottom, or vice versa. In this way, the sludge flows in a vertical, downward or upward direction through the first chamber. The same applies to all other chambers, whereby the flow through the last chamber has preferably a downward direction. The level in the last chamber is monitored and used to control the sludge withdrawal pump, i.e. synchronizing the sludge withdrawal flow with the sludge feed flow.
The new continuous flow system is easy to control and prevents recontamination by clearly separating a location where contaminated sludge enters the first chamber and another distant point where disinfected sludge leaves the last chamber. contaminated sludge is never in contact with disinfected sludge.
The flow through the chambers is slow; it is a so-called laminar flow. A laminar flow through a tube has a parabolic flow pattern. The velocity at the center of the tube is two times the average velocity, and the velocity at the wall is zero. The minimum residence time of all sludge particles is therefore half the mean residence time. The same applies to the flow through a non-circular chamber, whereby a hydraulic diameter is used instead of a real diameter. The hydraulic diameter is 4 times the cross sectional area divided by the perimeter. The mean detention time t
2
in the chambers should be at least two times t. The fastest sludge particles have a detention time of minimum t. The total tank volume is V=2*q*t and is therewith only ⅔ of the total tank volume of a batch system.
The slimmer the chambers, the lower the risk of short-circuiting. A single chamber should have a height to width ratio of minimum 3. Where several chambers are used, the flow path length 1 through these chambers should be at least 3 times the hydraulic diameter d.
While a slim chamber with a l/d ratio of 8 is sufficient for a t
2
/t ratio of 2, t
2
/t must be higher if the chamber is stout. In addition the product of t
2
/t*l/d should be minimum of 8 and preferably 16. The average detention time t
2
in a stout chamber with l/d=3 should be minimum 2.67*t for 8 or 5.33*t for 16. If e.g. T=70° C. and the required minimum detention time according to regulations is t=0.5 hours, the average detention time in a chamber with l/d=3 should be minimum of 1.3 hours and preferably 2.7 hours.
The flow pattern within the chambers can also be influenced by thermal convection. If the incoming sludge has a slightly higher temperature than the sludge in the chamber, the incoming sludge stratifies at the top and moves down in a layer as it cools down. Because the flow has approximately a plug-flow characteristic in this case, the minimum detention time is only slightly shorter than the mean detention time. It is therefore an advantage to have a downward flow.
On the other hand, sludge particles that are heavier than the bulk of the sludge sink relative to the sludge bulk. Therefore it is also beneficial to provide an upward flow in one of the chambers. In an upward flow, the detention time of heavy particles is longer than the average detention time. The analog consideration applies for sludge particles that are lighter than the bulk of the sludge. They are slower if the flow through the chamber is directed downwards.
Consequently, it is beneficial if at least one of the chambers has an upward flow, and another chamber has a downward flow.
Heavy particles, such as grit, can accumulate at the bottom of a chamber if the upward velocity is slower than the sedimentation velocity of these particles. Therefore it is suggested to periodically remove grit from the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for thermal sludge disinfection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for thermal sludge disinfection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for thermal sludge disinfection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165067

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.