Process for the synthesis of silicoaluminophosphate...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Phosphorus or compound containing same

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S305000, C423S306000, C423S328200

Reexamination Certificate

active

06514899

ABSTRACT:

PRIORITY CLAIM
This Application claims priority to PCT Application No. PCT/RO99/00015, filed Oct. 1, 1999 and entitled “Process for the Synthesis of Silicoaluminophosphate Molecular Sieves.”
FIELD OF THE INVENTION
The present invention relates to a process for the synthesis of silicoaluminophosphate molecular sieves.
BACKGROUND OF THE INVENTION
Light olefins, defined herein as ethylene, propylene, and mixtures thereof, serve as feeds for the production of numerous important chemicals and polymers. Light olefins traditionally are produced by cracking petroleum feeds. Because of a limited supply of competitive petroleum feeds, the opportunities to produce low cost light olefins from petroleum feeds are limited. Efforts to develop light olefin production technologies, based on alternative feeds, have increased.
An important type of alternate feed for the production of light olefins are oxygenates, such as, for example, alcohols, particularly methanol and ethanol, dimethyl ether, methyl ethyl ether, diethyl ether, dimethyl carbonate, and methyl formate. Many of these oxygenates may be produced by fermentation, or from synthesis gas derived from natural gas, petroleum liquids, carbonaceous materials, including coal, recycled plastics, municipal wastes, or any organic material. Because of the wide variety of sources, alcohol, alcohol derivatives, and other oxygenates show promise as economical, non-petroleum sources for light olefin production.
Typically, oxygenates are converted to an olefin product through a catalytic process. The conversion of a feed containing oxygenates is usually conducted in the presence of a molecular sieve catalyst. Although ZSM-type molecular sieves and other molecular sieves may be used for the production of olefins from oxygenates, research has found silicoaluminophosphate (SAPO) molecular sieves to be of particular value in the catalytic process.
While SAPO molecular sieves are thought to be the most useful, synthesis of this type of catalyst is expensive because of the low yield of molecular sieve provided by the reaction mixture used to formulate this type of molecular sieve. In a SAPO synthesis procedure, a silica source, an alumina source, a phosphorous source and a templating agent are combined to form a reaction mixture. The SAPO molecular sieve is then crystallized over a period of time, typically a period of several hours to several days, from the reaction mixture.
The synthesis of SAPOs is sensitive to small variations in the reaction mixture composition and reaction mixture preparation. These sensitivities vary from one type of SAPO to another. One critical parameter of the synthesis procedure is the pH of the reaction mixture. At the start of a SAPO synthesis, the reaction mixture, sometimes referred to in the art as the “final” reaction mixture, has an initial pH. As the synthesis proceeds, the pH of the reaction mixture increases. It has been found that this increase in pH makes it difficult for the SAPO molecular sieve to crystallize from the reaction mixture even in the presence of excess quantities of the silica source, the alumina source, the phosphorous source and the template, and this pH increase eventually causes the synthesis reaction to cease.
Romanian Patent No. 114,524 B1 describes a process for forming a SAPO molecular sieve, particularly for forming SAPO-34. In the process disclosed in the '524 patent, a solution of tetraethylammonium phosphate with a concentration of 25% is prepared using a conventional method from triethylamine, ethyl bromide and 73% concentrated phosphoric acid. Hydrated alumina with an Al
2
O
3
content of 65%, of which 40% is bayerite, is suspended in demineralized water and introduced, under agitation, into a zeolitization autoclave after the solution of tetraethylammonium phosphate was introduced to the autoclave. Under continuous agitation, a silica sol which is stabilized with ammonia and which has a content of 28% SiO
2
is introduced to the autoclave. The pH of the resultant suspension is then adjusted to 6.3-6.5 with phosphoric acid.
The zeolitization process is conducted in six successive steps. In the first step, 15% of the entire charge is introduced into an autoclave. The temperature is then increased to 198-205° C. and maintained at that point for 20 hours. The autoclave is cooled to 30-40° C. and an additional quantity of the suspension is introduced to the autoclave. After addition of an additional amount of the suspension, the process is resumed at 198-205° C. The operation is repeated for an additional period of five hours. The entire zeolitization process lasts for 100 hours. This time period includes the steps of cooling and heating which last for 2-3 hours each.
WO 99/19254 describes a method for making molecular sieves comprising SAPO-44. In a preferable version of the process for making SAPO-44, the pH of the final reaction mixture (containing a silicon component, a phosphorous component, an aluminum component and a template) is maintained in the range from about 5.5 to about 8.5, preferably from about 6 to about 8. This reference teaches that the pH value of the final reaction mixture may be adjusted, if desired, by either adding an appropriate amount of a base, such as ammonia/ammonia hydroxide, to increase the pH, or an appropriate amount of a suitable inorganic or organic acid, such as phosphoric acid, HCl, acetic acid, formic acid, CO
2
and others, to decrease the pH.
With the aforementioned methods and other methods currently in use the art, an initial pH adjustment to the reaction mixture helps to establish appropriate conditions for the formation of a SAPO molecular sieve. These methods, however, do not alleviate or prevent the pH increase which occurs as the synthesis reaction continues. As discussed above, this pH increase drives the synthesis reaction to completion even in the presence of excess building materials for the sieve, often providing low yields of the molecular sieve. Thus, a need exists in the art for improved methods for synthesizing SAPO molecular sieves.
SUMMARY OF THE INVENTION
In order to overcome many of the problems inherent in the prior art, the present invention provides a method for the synthesis of silicoaluminophosphate (SAPO) molecular sieves.
As used herein, the term “initial pH” or “first pH” refers to the pH of the reaction mixture immediately after it has been formed from the phosphorous-containing composition, the aluminum-containing composition, the silicon-containing composition and the template, prior to any heating of the reaction mixture and after any pH adjustments to the reaction mixture, such as disclosed in the art.
One aspect of the present invention is directed to a method for forming a silicoaluminophosphate (SAPO) molecular sieve. The method comprises the following steps: providing a source of a silicon-containing composition; providing a source of an aluminum-containing composition; providing a source of a phosphorous-containing composition; providing a template; forming a reaction mixture sufficient to form a SAPO molecular sieve from the source of a silicon-containing composition, the source of an aluminum-containing composition, the source of a phosphorous-containing composition, and the template, the reaction mixture having a first pH; determining a pH increase in the reaction mixture such that the reaction mixture has a second pH higher than the first pH; and adding, after the determining the pH increase, an acid to the reaction mixture to adjust the second pH to from the first pH plus about one pH unit to the first pH minus about one pH unit. The present invention is also directed to a silicoaluminophosphate molecular sieve made by this process.
This aspect of the invention may also include the following steps: dissolving at least a portion of the crystals of the SAPO molecular sieve in the reaction mixture; adding an acid to the reaction mixture; and re-crystallizing crystals of the SAPO molecular sieve from the reaction mixture.
Another aspect of the present invention is directed to a method for making a silicoalumi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the synthesis of silicoaluminophosphate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the synthesis of silicoaluminophosphate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the synthesis of silicoaluminophosphate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.