Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
1998-07-08
2001-12-04
Geist, Gary (Department: 1623)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C536S024300, C536S024500, C536S025340, C435S091200
Reexamination Certificate
active
06326478
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to methods for the preparation of oligomeric compounds having phosphite, phosphodiester, phosphorothioate, phosphorodithioate or other linkages, and to intermediates useful in their preparation.
BACKGROUND OF THE INVENTION
Oligonucleotides and their analogs have been developed and used in molecular biology in a variety of procedures as probes, primers, linkers, adapters, and gene fragments. Modifications to oligonucleotides used in these procedures include labeling with nonisotopic labels, e.g. fluorescein, biotin, digoxigenin, alkaline phosphatase, or other reporter molecules. Other modifications have been made to the ribose phosphate backbone to increase the nuclease stability of the resulting analog. Examples of such modifications include incorporation of methyl phosphonate, phosphorothioate, or phosphorodithioate linkages, and 2′-O-methyl ribose sugar units. Further modifications include those made to modulate uptake and cellular distribution. With the success of these compounds for both diagnostic and therapeutic uses, there exists an ongoing demand for improved oligonucleotides and their analogs.
It is well known that most of the bodily states in multicellular organisms, including most disease states, are effected by proteins. Such proteins, either acting directly or through their enzymatic or other functions, contribute in major proportion to many diseases and regulatory functions in animals and man. For disease states, classical therapeutics has generally focused upon interactions with such proteins in efforts to moderate their disease-causing or disease-potentiating functions. In newer therapeutic approaches, modulation of the actual production of such proteins is desired. By interfering with the production of proteins, the maximum therapeutic effect may be obtained with minimal side effects. It is therefore a general object of such therapeutic approaches to interfere with or otherwise modulate gene expression, which would lead to undesired protein formation.
One method for inhibiting specific gene expression is with the use of oligonucleotides, especially oligonucleotides which are complementary to a specific target messenger RNA (MRNA) sequence. Several oligonucleotides are currently undergoing clinical trials for such use. Phosphorothioate oligonucleotides are presently being used as such antisense agents in human clinical trials for various disease states, including use as antiviral agents.
Transcription factors interact with double-stranded DNA during regulation of transcription. Oligonucleotides can serve as competitive inhibitors of transcription factors to modulate their action. Several recent reports describe such interactions (see Bielinska, A., et. al.,
Science,
1990, 250, 997-1000; and Wu, H., et. al.,
Gene,
1990, 89, 203-209).
In addition to such use as both indirect and direct regulators of proteins, oligonucleotides and their analogs also have found use in diagnostic tests. Such diagnostic tests can be performed using biological fluids, tissues, intact cells or isolated cellular components. As with gene expression inhibition, diagnostic applications utilize the ability of oligonucleotides and their analogs to hybridize with a complementary strand of nucleic acid. Hybridization is the sequence specific hydrogen bonding of oligomeric compounds via Watson-Crick and/or Hoogsteen base pairs to RNA or DNA. The bases of such base pairs are said to be complementary to one another.
Oligonucleotides and their analogs are also widely used as research reagents. They are useful for understanding the function of many other biological molecules as well as in the preparation of other biological molecules. For example, the use of oligonucleotides and their analogs as primers in PCR reactions has given rise to an expanding commercial industry. PCR has become a mainstay of commercial and research laboratories, and applications of PCR have multiplied. For example, PCR technology now finds use in the fields of forensics, paleontology, evolutionary studies and genetic counseling. Commercialization has led to the development of kits which assist non-molecular biology-trained personnel in applying PCR. Oligonucleotides and their analogs, both natural and synthetic, are employed as primers in such PCR technology.
Oligonucleotides and their analogs are also used in other laboratory procedures. Several of these uses are described in common laboratory manuals such as
Molecular Cloning, A Laboratory Manual,
Second Ed., J. Sambrook, et al., Eds.,
Cold Spring Harbor Laboratory Press,
1989; and
Current Protocols In Molecular Biology,
F. M. Ausubel, et al., Eds.,
Current Publications,
1993. Such uses include as synthetic oligonucleotide probes, in screening expression libraries with antibodies and oligomeric compounds, DNA sequencing, in vitro amplification of DNA by the polymerase chain reaction, and in site-directed mutagenesis of cloned DNA. See
Book
2
of Molecular Cloning, A Laboratory Manual,
supra. See also “DNA-protein interactions and The Polymerase Chain Reaction” in Vol. 2 of
Current Protocols In Molecular Biology,
supra.
Oligonucleotides and their analogs can be synthesized to have customized properties that can be tailored for desired uses. Thus a number of chemical modifications have been introduced into oligomeric compounds to increase their usefulness in diagnostics, as research reagents and as therapeutic entities. Such modifications include those designed to increase binding to a target strand (i.e. increase their melting temperatures, Tm), to assist in identification of the oligonucleotide or an oligonucleotide-target complex, to increase cell penetration, to stabilize against nucleases and other enzymes that degrade or interfere with the structure or activity of the oligonucleotides and their analogs, to provide a mode of disruption (terminating event) once sequence-specifically bound to a target, and to improve the pharmacokinetic properties of the oligonucleotide.
The chemical literature discloses numerous processes for coupling nucleosides through phosphorous-containing covalent linkages to produce oligonucleotides of defined sequence. One of the most popular processes is the phosphoramidite technique (see, e.g., Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach, Beaucage, S. L.; Iyer, R. P.,
Tetrahedron,
1992, 48, 2223-2311 and references cited therein), wherein a nucleoside or oligonucleotide having a free hydroxyl group is reacted with a protected cyanoethyl phosphoramidite monomer in the presence of a weak acid to form a phosphite-linked structure. Oxidation of the phosphite linkage followed by hydrolysis of the cyanoethyl group yields the desired phosphodiester or phosphorothioate linkage.
The phosphoramidite technique, however, has significant disadvantages. For example, cyanoethyl phosphoramidite monomers are quite expensive. Although considerable quantities of monomer go unreacted in a typical phosphoramidite coupling, unreacted monomer can be recovered, if at all, only with great difficulty.
Another disadvantage of using a &bgr;-eliminating cyanoethoxy group is formation of acrylonitrile upon removal of the phosphorus protecting group. Acrylonitrile is a highly toxic agent as well as a suspected carcinogen (See 1994-1995 Aldrich Chemical Company Catalog, at page 32). Acrylonitrile is also suspected of forming cyclic structures with thymidine resulting in oligomeric compounds having decreased hybridization ability. These modified oligomeric compounds are undesirable because they are difficult to separate from the desired oligomeric compound.
Consequently, there remains a need in the art for synthetic methods that will overcome these problems.
Several processes are known for the solid phase synthesis of oligonucleotide compounds. These are generally disclosed in the following U.S. Pat. Nos.: 4,458,066; issued Jul. 3, 1984; 4,500,707, issued Feb. 19, 1985; and 5,132,418, issued Jul. 21, 1992. Additionally, a process for the preparation of oligonucleotides usi
Cheruvallath Zacharia S.
Cole Douglas L.
Ravikumar Vasulinga T.
Crane L. E
Geist Gary
ISIS Pharmaceuticals Inc.
Woodcock & Washburn LLP
LandOfFree
Process for the synthesis of oligomeric compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the synthesis of oligomeric compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the synthesis of oligomeric compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2578277