Process for the recovery of purified terephthalic acid (PTA)

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S485000, C562S486000

Reexamination Certificate

active

06639104

ABSTRACT:

The present invention relates to a new process for the production and recovery of purified terephthalic acid (“PTA”). More particularly, this application relates to the use of a rotary pressure filter to recover crystalline terephthalic acid and a process to recover the resulting crystals at atmospheric pressure. The process involves moving the crystalline material through at least two valves defining separate zones, wherein each succeeding zone is at a pressure slightly less than the previous zone.
Terephthalic acid is used in the production of many different polymers, including polyethylene terephthalate (PET). The typical process for PET is the direct condensation of terephthalic acid with a polyalcohol. This direct esterification reaction requires purified terephthalic acid, for the reaction product to be acceptable.
Terephthalic Acid is produced by direct oxidation of p-xylene and subsequent crystallization from the mother liquor to recover the Crude Terephthalic Acid (CTA). This CTA still contains approximately 0.2-0.4% by weight of 4-carboxybenzaldehyde (4-CBA) as major impurity. To reduce the content of 4-CBA, the CTA is typically dissolved in water and then the resulting solution is treated in a hydrogenation reactor, to convert the 4-CBA into p-toluic acid. The solution from the hydrogenation reactor is then typically cooled by flash in a battery of crystallizers to precipitate the purified terephthalic acid (PTA) as a crystal. The slurry coming from the crystallizers still contains a significant amount of p-toluic acid that needs to be separated from PTA, to meet the usual commercial specification of no more that 150 ppm.
In order to purify the PTA two subsequent stages of solid separation are most currently used. The traditional method to separate the PTA from its mother liquor consists in centrifuging the slurry at a temperature of from 100° C. to 170° C. and a pressure of from 1 to 7 bar. Under these conditions the majority of the p-toluic acid will remain in solution, allowing it to be separated.
The crystals of PTA coming from the centrifuges contain only a small amount of p-toluic acid, but do contain residual mother liquor (typically 10-15%). To get rid of these impurities, the crystals are usually mixed with additional water, typically in a ratio of 1.1 to 1.5 m
3
water/ton PTA, to wash the mother liquor still entrained. This results in a slurry having a 45±5% solids. This slurry is then flashed to atmospheric pressure and fed either to a second stage of centrifuges or to Rotary Vacuum Filters (RVF). The PTA, containing a residual 10-15% of water, is then dried, typically in a rotary dryer, and stored. The PTA crystals still contain minor amounts of p-toluic acid (usually less than 150 ppm) while 4-CBA content is typically lower than 25 ppm.
These traditional methods have high capital costs in that they require a large scale pressure centrifuge as well as either a large scale RVF or a second large scale centrifuge. This in turn leads to high maintenance costs with accompanying lack of reliability. Additionally the centrifuge causes significant crystal breakage such that the particle size distribution is greatly enlarged, especially of particle sizes less than 44 microns. This process also requires a lot of water that needs to be heated up to the process temperature. Finally the process results in a product with a relatively large amount of moisture which must be removed in the dryer, resulting in high energy consumption.
U.S. Pat. No. 5,175,355 teaches a method of purifying the terephthalic acid comprising pressure filtering. This reference teaches introducing an aqueous slurry (comprising purified terephthalic acid present as crystals and p-toluic acid present in the aqueous solution and as a co-crystallized form) into one or more filter cells. The slurry is filtered at a system pressure of from atmosphere to 16 atm. The filter cell with the resulting filter cake is then transported into a wash zone where a stream of water heated to 38° C. to 205° C. is introduced to the filter cell to form a reservoir of water over the filter cake. Displacement washing is then achieved by forcing the water through the cake at a pressure gradient, which is at least 0.5 atm above the system pressure while maintaining the reservoir. The displacement washing is allowed to continue for a sufficient time to remove a desired amount of impurities. The filter cell is then transported to a pressure release zone wherein the system pressure is quickly released to flash evaporate the water remaining in the filter cake and the product is recovered. The pressure release zone is then pressurized back up to the system pressure so as to be ready to accept additional product. This process reportedly results in terephthalic acid that contains less than 200 ppm by weight of p-toluic acid.
While this process satisfactorily produces pure product, it is a time consuming process as the pressure release zone repeatedly has to be pressurized back up to the system pressure before it can accept more displacement washed material.
The applicants of the present invention have found that the process can be improved by transferring the washed filter cake to a letdown zone (or pressure release zone) which is at a pressure less than the pressure of the washing zone. In this way the time required to pressure up the letdown zone is dramatically reduced. The applicants of the present invention have discovered that the pressure of the letdown zone approaches the desired pressure asymptotically. That is to say that the majority of the pressure differential between the release pressure and the system pressure is made up in the early stages of re-pressurization, whereas the final bit takes a relatively longer period of time. Thus, by allowing the letdown zone to be pressurized to a pressure less than the system pressure, much time can be saved. Shortening the cycle time allows the front end of the production to be run faster, or alternatively allows smaller rotary pressure filters to be used without causing a bottleneck.
Furthermore, it has been discovered that a pressure differential between the letdown zone and the washing zone actually facilitates the movement of product, as it is carried to some extent by the flow of gas, which occurs when the barrier between the two zones is removed. This also has been observed to help keep the filter itself free from clogging.
Additionally the applicants of the present invention have discovered that it is advantageous, for the best mechanical performance of the system mainly to avoid plugging of the vent line, to release the pressure more slowly than the flash evaporation taught by U.S. Pat. No. 5,175,355.
One aspect of the invention is a process for the preparation of purified terephthalic acid which comprises first introducing a liquid slurry containing crystallized terephthalic acid with impurities into a high pressure rotary filter, then filtering the slurry with the high-pressure rotary filter and collecting at least some of the solid portion. Then the solid portion is washed with additional amounts of water. The washed solid portion is then transferred to a letdown zone, which is at a pressure less than the zone in which the solid portion was collected. After the solid portion is transferred into the letdown zone, the connection between the letdown zone and the collection zone is sealed, such that a change of pressure in the letdown zone will not effect the pressure in the collection zone. The pressure of the letdown zone is then reduced and the solid removed. The letdown zone is then pressured back up so that it is ready to accept additional solid from the rotary filter.
The liquid slurry containing the terephthalic acid containing the impurities can come from any terephthalic acid production scheme. These are known in the art and are of minimal importance to the invention at hand. The particular high-pressure rotary filter used to filter the slurry is similarly not critical to the present invention. Any filtering system capable of operating at a pressure grea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the recovery of purified terephthalic acid (PTA) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the recovery of purified terephthalic acid (PTA), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the recovery of purified terephthalic acid (PTA) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.