Process for the recovery of fluorinated alkandic acids from...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S605000, C562S608000, C252S301500, C252S391000, C510S315000

Reexamination Certificate

active

06518442

ABSTRACT:

This application is a 371 of PCT/EP 99/03673 filed May 27, 1999.
In the polymerization of fluorinated monomers in aqueous dispersion, use is made of fluorinated alkanoic acids as emulsifiers since they have no telogenic properties. In particular, use is made of the salts, preferably the alkali metal or ammonium salts, of perfluorinated or partially fluorinated alkane-carboxylic acids or alkane-sulfonic acids. These compounds are prepared by electrofluorination or by telomerization of fluorinated monomers, which is costly. There have therefore been many attempts to recover these valuable materials from wastewater.
U.S. Pat. No. 5,442,097 discloses a process for the recovery of fluorinated carboxylic acids in usable form from contaminated starting materials. In this process, the fluorinated carboxylic acid is, if necessary, liberated from these materials in an aqueous medium using a sufficiently strong acid, the fluorinated carboxylic acid is reacted with a suitable alcohol and the ester formed is distilled off. The starting material can here be a polymerization liquor, in particular from an emulsion polymerization in which the fluoropolymer is prepared in the form of colloidal particles with the aid of relatively high amounts of emulsifier. This process has proven very useful, but requires a certain concentration of fluorinated carboxylic acid in the starting material. DE-A-20 44 986 discloses a process for the recovery of perfluorocarboxylic acids from dilute solution, in which the dilute solution of the perfluorocarboxylic acids is brought into adsorption contact with a weak base anion-exchange resin and the perfluorocarboxylic acid present in the solution is thereby adsorbed on the anion-exchange resin, the anion-exchange resin is eluted with an aqueous ammonia solution and the adsorbed perfluorocarboxylic acid is thus transferred into the eluant and the acid is finally isolated from the eluate. However, complete elution requires relatively large amounts of dilute ammonia solution and this process is also very time-consuming. These disadvantages are overcome by the process known from U.S. Pat. No. 4,282,162 for the elution of fluorinated emulsifier acids adsorbed on basic anion exchangers, in which the elution of the adsorbed fluorinated emulsifier acid from the anion exchanger is carried out using a mixture of dilute mineral acid and an organic solvent. In this process, the ion-exchange resin is regenerated at the same time by use of the acid.
It has been found that this last-named process presents problems in industrial practice when, in particular, the wastewater processed contains very fine solids which in the past were often not recognized or at least not recognized as causing a problem. In this case, the apparatuses containing the anion-exchange resin become clogged with these solids more or less quickly, which becomes noticeable as a result of increased flow resistance and reduced performance. The upstream filters or frits customarily used are ineffective here.
It has also been found that these difficulties are caused by the fine solids being trapped in relatively stable colloidal suspension by the emulsifier acids. When these acids are then removed from the system by means of the anion-exchange resin, this relatively stable dispersion is destroyed and the solid is precipitated and clogs the ion-exchange resin. It was thus also found that the performance of the process known from U.S. Pat. No. 4,282,162 can be considerably improved and also made suitable for wastewater containing fine solids if the dispersion of the solids in the wastewater is stabilized by addition of a nonionic or cationic surface-active additive (surfactant) before the wastewater is brought into contact with the anion exchanger. The nonionic or cationic surfactants are not bound by the anion exchanger.
The invention accordingly provides a process for the recovery of fluorinated emulsifier acids from wastewater, which comprises stabilizing the solids which are finely dispersed in the wastewater by means of a nonionic or cationic surfactant or a surface-active substance having an analogous effect and subsequently binding the fluorinated emulsifier acids to an anion-exchange resin and eluting the fluorinated emulsifier acids from this.
Wastewater suitable for treatment is waste process water in which surface-active fluorinated alkanoic acids are present. The process is particularly suitable for wastewater from the polymerization of fluorinated monomers by the emulsion method, in which the fluorinated monomer is converted in the presence of a relatively high concentration of fluorinated emulsifier acid and with mild stirring into a finely divided polymer which is in finely dispersed, colloidal form and in which the latex obtained is coagulated, for example by intensive stirring, after the desired solids concentration has been reached, so that the polymer precipitates as a fine powder.
It has been found that in the known work-up it is especially relatively low molecular weight polymer material which causes difficulties; the adverse effect of these low molecular weight polymers becomes particularly noticeable when the polymerization process leads to a broad molecular weight distribution. In the case of such “difficult” wastewater too, the process of the invention displays its capabilities.
The removal of solids before the wastewater is brought into contact with the ion-exchange resin is also known (German patent application 198 24 614.5 of Jun. 2, 1998 with the title “Verfahren zur Rückgewinnung von fluorierten Alkansäuren aus Abwässern”). However, this has the disadvantage of a high outlay in terms of apparatus for the solids removal and the amount of auxiliary chemicals to be added (for example milk of lime, aluminum salts, flocculants). Particularly at low solids concentrations, complete removal of the colloidal material requires relatively large amounts of chemicals which are removed again to only a limited extent in the solids removal.
In the process of the invention, the outlay in terms of apparatuses and chemicals is considerably reduced since the addition of small amounts of a preferably readily biodegradable surfactant is sufficient for stabilizing the colloids and ensures trouble-free operation of the ion exchanger.
The adsorption of the emulsifier acids onto ion-exchange resins can be carried out in a manner known per se. Suitable resins are, in particular, strong base anion-exchange resins as are obtainable, for example, under the trade names ®AMBERLITE IRA-402, ®AMBERJET 4200 (both Rohm & Haas), ®PUROLITE A845 (Purolite GmbH) or ®LEWATIT MP-500 (Bayer AG).
The adsorption can be carried out in a manner known per se, with the ion-exchange resins being located in customary apparatuses such as tubes or columns through which the wastewater flows.
The elution of the bound emulsifier acids is likewise carried out in a manner known per se, with preference being given to the method described in U.S. Pat. No. 4,282,162.
Methods suitable for isolating the emulsifier acids in the high purity required for use in polymerization are, for example, those described in the abovementioned U.S. Pat. No. 5,442,097 or that described in U.S. Pat. No. 5,312,935 in which the eluate is firstly substantially freed of water and then treated with oxidizing agents.
The wastewater remaining after adsorption of the emulsifier acids is treated in a known manner, depending on the content of other materials.


REFERENCES:
patent: 3882153 (1975-05-01), Seki et al.
patent: 4282162 (1981-08-01), Kuhls
patent: 4369266 (1983-01-01), Jurgen et al.
patent: 5312935 (1994-05-01), Mayer et al.
patent: 5442097 (1995-08-01), Obermeier et al.
patent: A 20 44 986 (1970-09-01), None
patent: A 566 974 (1993-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the recovery of fluorinated alkandic acids from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the recovery of fluorinated alkandic acids from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the recovery of fluorinated alkandic acids from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3130557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.