Process for the production of methyl methacrylate

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S205000, C562S599000, C562S600000

Reexamination Certificate

active

06670501

ABSTRACT:

The present invention relates to a process for the production of methyl methacrylate.
Conventionally, methyl methacrylate has been produced industrially by the well known acetone-cyanohydrin route. The process is capital intensive and produces methyl methacrylate at a relatively high cost.
Other processes for the production of methyl methacrylate are disclosed in U.S. Pat. No. 3,535,371, U.S. Pat. No. 4,336,403, GB-A-1107234, JP-A-63002951 in which propionic acid or its methyl ester is reacted with formaldehyde or derivatives in the presence of methanol. However, there is no disclosure in these references of how to separate the methyl methacrylate product from the residual reactants, and other by-products of the reaction with which it is associated.
One problem which is encountered in the separation of the methyl methacrylate product from such reactions is that the by-products produced, for example methyl isobutyrate and diethyl ketone, are difficult to separate from the methyl methacrylate by conventional distillation methods because their boiling points are very similar. The boiling point of methyl methacrylate at atmospheric pressure is 100° C., whilst that of methyl isobutyrate is 92° C. and diethyl ketone is 100° C. The molecules are also similar in size and shape so that separation by means of molecular sieves offers little potential. There is therefore a need for a process to produce methyl methacrylate which overcomes the above-described problem of separating the methyl methacrylate product from certain impurities.
GB-A-1235208 describes a process for the purification of alkyl methacrylates which are contaminated with impurities which have melting points below −50° C., especially methyl isobutyrate and lower alkyl iodides, by fractional crystallisation and counter-current washing of the resulting methyl methacrylate crystals. This document, however, does not indicate any suitable process for the removal of impurities from methyl methacrylate which have melting points above −50° C.
Two of the principal impurities found in a quenched product stream of a condensation reaction between formaldehyde and methyl propionate are diethyl ketone (DEK) and methyl isobutyrate (MIB). Whilst MIB has a melting point of −85° C., DEK has a melting point of −39° C., which is higher than that of methyl methacrylate at −47° C. We have now found that MIB, DEK and other compounds may be removed from methyl methacrylate by fractional crystallisation.
Accordingly the present invention provides a process for the production of methyl methacrylate, which process comprises the steps of:
(i) reacting propionic acid or an ester thereof with formaldehyde or a precursor thereto in a condensation reaction to produce a gaseous product stream comprising methyl methacrylate, residual reactants, methanol and byproducts;
(ii) processing at least a portion of the gaseous product stream to form a liquid product stream comprising substantially all of the methyl methacrylate and at least one impurity which melts at a temperature of greater than −50° C.; and subjecting said liquid product stream to at least one fractional crystallisation stage which comprises the steps of:
(iii) cooling said liquid product stream to between about −45° C. and about −95° C. such that said liquid product stream forms crystals of solid methyl methacrylate and mother liquor, said crystals containing a higher proportion of methyl methacrylate than does said liquid product stream or mother liquor,
(iv) separating said crystals of solid methyl methacrylate from said mother liquor and
(v) melting said crystals to form liquid methyl methacrylate which contains a lower concentration of said impurities than said liquid product stream.
In this way, substantially pure methyl methacrylate may be obtained from a complex product stream which contains a range of impurities having a range of melting points falling both above and below that of the pure methyl methacrylate.
The methyl methacrylate recovered from the process preferably contains less than 0.5% by weight of other materials, more preferably less than 0.2% by weight, and especially less than 0.1% by weight of undesirable impurities.
Preferably the methyl methacrylate is produced by the condensation of methyl propionate with formaldehyde or a precursor thereto, e.g. methylal, and particularly by the condensation of methyl propionate with formaldehyde. By-products from the reaction include water, diethyl ketone (DEK), propionic acid (PA), methacrylic acid (MAA) and methyl isobutyrate (MIB) and methanol.
The condensation reaction is preferably conducted in the presence of a catalyst, e.g. a caesium catalyst on a silica support. The condensation reaction stage may be conducted at any suitable temperature and pressure. Typically, the condensation reaction stage is conducted at a temperature from 250 to 400° C. and preferably from 300 to 375° C. Typically, the condensation reaction stage is conducted at a pressure from 10
4
to 10
6
N.m
−2
and preferably from 10
5
to 10
6
N.m
−2
.
The gaseous product stream from the condensation reaction may be liquefied by any suitable means, e.g. quenching, condensing. The resulting liquid stream is then separated into a liquid product stream and one or more streams containing residual materials by means of e.g. fractional distillation. Any residual feed materials recovered are preferably recycled to the condensation reaction.
The liquid product stream may comprise up to 20% by weight of materials such as MIB and DEK (3-pentanone), PA or MM produced by side reactions. The liquid product stream preferably contains less than 20%, more preferably less than 5% of such impurities. The level of impurities or by-products may be controllable by adjusting the reaction conditions or post-reaction separations.
The liquid product stream is cooled to between about −45° C. and about −95° C. so that a part of the liquid product stream freezes to form crystals of solid methyl methacrylate and a mother liquor or supernatant, which is that part of the liquid product stream which remains unfrozen.
The level of impurities in the methyl methacrylate crystals may be affected by the rate at which the liquid product stream is cooled. The rate at which the liquid product stream is cooled may be controlled to optimise the separation of the methyl methacrylate from the impurities by minimising the amount of impurities contained in the crystals. A relatively slow rate of cooling has been found to produce methyl methacrylate crystals which contain a lower proportion of impurity than crystals formed as a result of faster cooling of the liquid product stream. The rate of cooling of the liquid product stream is preferably less than 30° C./min, more preferably less than 20° C./min and most preferably less than 10° C./min. A lower rate of cooling may be preferable, e.g. less than 5° C./min.
The crystals of methyl methacrylate which form on cooling the liquid product stream may be further treated to remove residual mother liquor, e.g. by washing or sweating. The crystals may be washed with a suitable solvent to remove the residual mother liquor and dried. The crystals of methyl methacrylate may be partially melted or “sweated” to reduce impurities. By partially melting the crystals, the impure portions of the crystal which melt at a lower temperature than the pure material may be removed. This process also encourages the release of any small amounts of mother liquor which may have become encapsulated in the crystals during their formation or which remains at the surface of the crystals.
The mother liquor which remains after the methyl methacrylate crystals have been removed may be further purified, e.g. by a further crystallisation process to increase the yield of purified methyl methacrylate.
The liquid methyl methacrylate obtained from the fractional crystallisation process may be further purified by a further fractional crystallisation process. Several crystallisation stages may be required, depending on the final

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the production of methyl methacrylate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the production of methyl methacrylate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the production of methyl methacrylate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182124

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.