Process for the production of linear organohydrogensiloxanes

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S068000, C556S451000, C556S469000, C556S470000, C528S012000, C528S031000, C528S033000, C528S037000, C528S023000

Reexamination Certificate

active

06534614

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a process for the production of linear organohydrogenpolysiloxanes.
BACKGROUND OF THE INVENTION
Linear organohydrogenpolysiloxanes are used in coatings, textiles and paper release applications. They are also used as source of SiH for catalyzed silicone addition cure with vinyl functional silicones.
Organohydrogenpolysiloxanes are typically prepared by hydrolysis of organohydogenpolysiloxane (RSiHCl
2
) with or without a chainstopper such as trimethylchlorosilane. The product is a mixture of linear and cyclic silicone hydride with the latter as the minor component. U.S. Pat. No. 5,395,956 discloses a continuous process of preparing cyclic organohydrogensiloxanes by contacting an organohydrogendichlorosilane with about a stoichiometric equivalent of water to form a hydrolyzate, an equilibrium mixture containing cyclic and linear organohydrogensiloxanes. The hydrolyzate is then rearranged by contact with an acidic rearrangement catalyst to effect formation of cyclic organohydrogensiloxanes. In U.S. Pat. No. 5,698,654, the ring opening polymerization of cyclic organosiloxanes is done in the presence of a basic catalyst and by the neutralization of the basic catalyst with an excess of a catalytic Lewis acid compound.
Since the majority of applications require materials containing mostly linear species, it is common in the art to flash strip or distill the hydrolyzate to remove the cyclic species. As the demand for linear organohydrogenpolysiloxanes grows, the amount of cyclic species also grows. There is still a need for an improved method for recycling the cyclic species and converting them to linear species.
SUMMARY OF THE INVENTION
The present invention relates to a process for preparing linear organopolysiloxanes, which comprises contacting organodichlorosilane in the presence of trimethylchlorosilane with water to form M-stopped hydrolyzate.
The hydrolyzate is contacted with an acidic rearrangement catalyst at a temperature of about 65° C. or lower to effect the formation of linear organopolysiloxanes. The linear organopolysiloxanes are separated from the cyclic organopolysiloxanes and recovered.
DESCRIPTION OF THE INVENTION
The present invention is a process for preparing linear organohydrogensiloxanes by converting volatile cyclic organohydrogensiloxanes in hydride hydrolyzates into linear organohydrogensiloxanes.
Preparing hydride hydrolyzate feed. The feed to the process of the present invention, hydride hydrolyzates or organomethyl-hydrosiloxanes are well-known in the silicone art and may be prepared by any suitable technique. In this step, halosilanes exemplified by the formula of RHSiCl
2
(1) are placed in contact with water in the presence of a chain stopper to form a hydrolyzate comprising cyclic organohydrogensiloxanes and linear organohydrogensiloxanes.
The silanes may be a single species of silane or may be a mixture of such silanes. The substituent R in formula (1) R is selected from a group consisting of saturated monovalent hydrocarbon radicals comprising one to 12 carbon atoms and aryl radicals. R can be, for example, methyl, ethyl, propyl, isopropyl, butyl, tertiary butyl, sec-butyl, hexyl, cyclohexyl, dodecyl, phenyl, tolyl, and naphthyl. In one embodiment, R is selected from a group consisting of methyl and phenyl. In another embodiment, R is methyl and methyldichlorosilane is used. In yet another embodiment, trimethylchlorosilane (CH
3
)
3
SiCl is added in less than 5 wt. % as a chain stopper to stop polymerization and control the viscosity of the finished fluid.
The ratio of cyclic to linear in the M-stopped hydrolyzate in the present invention, as well as the chain length of the linear siloxane, varies depending on the conditions of the hydrolysis, such as the ratio of halosilane to water, temperature, contact, time, and solvents. M-stopped hereby, as commonly known in the art, refers to the tri-functional organosilane end groups R
1,2,3
SiO
1/2
at the end of the chain, wherein each of the R
1
, R
2
, and R
3
is independently selected from one to forty carbon atom monovalent hydrocarbon radicals. In one embodiment, M is trimethylsilyl.
In one embodiment of this hydrolysis reaction, the silane is contacted with excess water, where a stoichiometric equivalent of water is defined as 0.5 mole of water per mole of halogen provided to the process by the silane. In another embodiment, the mole ratio of water to silane is 100 to 200% of stoichiometric equivalence.
Contact of the silane with the water can be conducted in standard reactors for hydrolyzing halosilanes. In one embodiment, the process is at a pressure at which the silane is present as a liquid phase. The hydrolysis process can be conducted at a temperature at about −15° C. to about 50° C. In one embodiment, the hydrolysis process is conducted at a temperature within a range of about 5° C. to 30° C.
The M-stopped hydrolyzate feed to the process of the present invention typically has a weight ratio of about 0.5:1 to 4:1 of cyclic organohydrogensiloxanes to linear organohydrogensiloxanes.
In one embodiment, the hydrolyzate formed in the hydrolysis process prior to being fed to the rearrangement process of the present invention is flash distilled to separate the cyclic organohydrogensiloxanes from the linear organohydrogensiloxanes. The flash distillation is typically a known standard method for separating cyclic siloxanes from mixtures for a feed stream with primarily cyclic. In one embodiment, the hydrolyzate is stripped at about 150° C. at 5 mm Hg to give an overhead stream comprising primarily trace hexamethyl disiloxane, mixed cyclics D
4
-D
5
and low-boiling linear species. The overhead stream is then fed to the rearrangement process to convert the cyclic species into linears.
In one embodiment of the invention, the M-stopped hydrolyzate feed to the rearrangement process of the present invention is in the form of being diluted in an inert solvent. By the term “inert” it is meant a solvent which can serves as a diluent and does not otherwise react in the process. In one embodiment, the inert solvents are those alkanes and mixtures of alkanes having a boiling point above that of the cyclic heptamer of the organohydrogensiloxane
Optional preheating step. In one embodiment, the M-stopped hydrolyzate feed is preheated to a temperature of about 35° C. to 55° C. in a heat exchanger prior to the rearrangement step comprising passing the hydrolyzate through an acid rearrangement catalyst. The preheating is optional to cut down on the residence time in the acid rearrangement reactor.
Rearranging the hydrolyzate feed. In this process, the M-stopped hydrolyzate feed, after the optional pre-heating step if desired, is passed through an acid rearrangement catalyst. Acid rearrangement catalysts can be any acid which facilitates rearrangement of cyclic organohydrogensiloxanes to linear organohydrogensiloxanes. The acidic rearrangement catalyst can be an Arhennius, Bronsted, or a Lewis acid. The acidic rearrangement catalyst can be a homogeneous catalyst such as hydrogen chloride, sulfuric acid, or chlorosulfonic acid. It can be a heterogeneous acid such as bentonite clays such as Super Filtrol F-I O (Engelhard Corporation, Jackson, Miss.). In one embodiment, the acidic rearrangement catalyst is a porous solid such as carbon, a clay, or a zeolite having absorbed thereto an acid such as sulfuric or phosphoric acid. Alternatives to acidic polymerization medium including art-known strong acid cationic ion exchange resins can be used, an example of which is Nafion® (Aldrich Chemical Company, Milwaukee, Wis.), a sulfonic acid functionalized fluoropolymer. Others include standard sulfonic acid functionalized styrene-divinylbenzene (H) ion exchange resins.
The temperature at which the rearrangement can be run is about 65° C. or lower. In one embodiment, the temperature is within a range of about 18° C. to 65° C. In another embodiment, the temperature is within a range of about 40° C. to 55° C.
In one embodiment of the invention, the pressure of the rearrang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the production of linear organohydrogensiloxanes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the production of linear organohydrogensiloxanes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the production of linear organohydrogensiloxanes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3018819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.