Process for the production of 1,5-naphthalenediamine

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S416000

Reexamination Certificate

active

06706924

ABSTRACT:

The invention relates to a process for the production of 1,5-naphthalenediamine by the reaction of ortho-nitrotoluene with an acrylic acid derivative, and to the intermediate products 4-(2-nitrophenyl)butyronitrile, 5-nitro-3,4-dihydro-1(2H)-naphthylimine, 5-nitroso-1-naphthylamine, 5-nitro-1-naphthylamine, 4-(2-aminophenyl)butyronitrile, 4-(2-nitrophenyl)ethyl butyrate, 4-(2-nitrophenyl)butyl butyrate, 4-(2-nitrophenyl)-butyramide and 5-amino-3,4-dihydro-1(2H)-naphthalene imine obtainable during the process.
Various processes for the production of 1,5-naphthalenediamine are already known in the literature. In general, the preparation of 1,5-naphthalenediamine starts from naphthalene which is suitably substituted. Thus, in JP-A2-07 278 066, the synthesis of 1,5-naphthalenediamine via an amine-bromine exchange on 1,5-bromoamino-naphthalene is described. The required educt is produced by bromination of 1-nitronaphthalene in this process.
In JP-A2-04 154 745, JP-A2-56 059 738 and DE-A1-2 523 351, the synthesis of 1,5-naphthalenediamine in combination with 1,8-naphthalenediamine by the reduction of a mixture of 1,5- and 1,8-dinitronaphthalene is described. In DE-C1-3 840 618, the synthesis of 1,5-naphthalenediamine by alkaline hydrolysis of disodium naphthalene-1,5-disulfonate and subsequent reaction with ammonia is described.
All these processes have the disadvantage that the product, or an intermediate produced during the process, is obtained as a mixture of isomers containing other isomers in addition to the 1,5 isomer, which have to be separated off. In addition, the process described in DE-C1-3 840 618 in particular takes place under very severe and corrosive reaction conditions.
The object of the present invention is therefore to provide a simple process for the production of 1,5-naphthalenediamine, by which 1,5-naphthalenediamine can be produced in just a few steps, starting from basic chemicals, without other isomers forming in significant quantities and having to be separated off.
A process has now been found, by which 1,5-naphthalenediamine can be prepared simply, in just a few steps and largely as a pure isomer, starting from ortho-nitrotoluene and acrylic acid derivatives, such as e.g. acrylonitrile, two inexpensive basic chemicals.
The object is achieved according to the invention by a process for the production of 1,5-naphthalenediamine containing a step in which ortho-nitrotoluene is reacted with an acrylic acid derivative.
Preferred acrylic acid derivatives are acrylic acid esters, such as e.g. methyl acrylate and ethyl acrylate, acrylamide and acrylonitrile.
The object is achieved according to the invention in particular by a process for the production of 1,5-naphthalenediamine containing a step in which ortho-nitrotoluene is reacted with acrylonitrile to give 4-(2-nitrophenyl)butyronitrile.
In a first preferred embodiment, the process for the production of 1,5-naphthalene-diamine contains the following steps:
a) reaction of ortho-nitrotoluene with acrylonitrile to give 4-(2-nitrophenyl)-butyronitrile,
b) cyclisation of the 4-(2-nitrophenyl)butyronitrile formed in step a) to the nitro imine and/or nitro enamine,
c) aromatisation of the nitro imine and/or nitro enamine formed in step b) to give 5-nitro-1-naphthylamine and/or 5-nitroso-1-naphthylamine,
d) hydrogenation of the 5-nitro-1-naphthylamine and/or 5-nitroso-1-naphthylamine formed in step c) to give 1,5-naphthalenediamine.
4-(2-Nitrophenyl)butyronitrile is produced from ortho-nitrotoluene and acrylonitrile preferably at temperatures of −10° C. to 100° C. It is particularly preferred to operate at 20° C. to 75° C., especially preferably at temperatures of 30° C. to 60° C.
The reaction is performed with base catalysis. Oxides, hydroxides and carbonates of lithium, sodium, potassium, rubidium, caesium, magnesium, calcium, strontium, barium or aluminium, and mixtures thereof, can be used as bases. Sodium hydroxide and potassium hydroxide are particularly suitable. In a preferred embodiment, the aqueous solutions are used in combination with a phase transfer catalyst. These phase transfer catalysts are e.g. quaternary ammonium salts. Suitable ammonium compounds are tetraalkylammonium halides and hydrogen sulfates, such as tributylmethyl-ammonium chloride, trioctylammonium chloride, tetrabutylammonium chloride or tetrabutylammonium hydrogen sulfate. The use of appropriate tetraalkyl- or tetraarylphosphonium salts, such as tetramethylphosphonium bromide and tetraphenyl-phosphonium bromide is also suitable, as is the use of solubility promoters, such as polyethylene glycol dimethyl ethers.
In principle, water and all organic solvents that are stable in bases are suitable as the solvents. Aromatic solvents, such as benzene, toluene, xylene, chlorobenzene, nitrobenzene or nitrotoluene, and also dimethyl sulfoxide, dimethyl formamide and aliphatic hydrocarbons, such as ligroin, cyclohexane, pentane, hexane, heptane or octane, are preferably used.
ortho-Nitrotoluene is particularly preferably used as educt and, at the same time, as solvent, and in an excess of ortho-nitrotoluene of 1 to 40 equivalents, especially 5 to 20 equivalents, based on acrylonitrile.
The cyclisation of 4-(2-nitrophenyl)butyronitrile to 5-nitro-3,4-dihydro-1-naphthylamine or the tautomeric 5-nitro-3,4-dihydro-1(2H)-naphthylimine is performed in substance or in an inert solvent in the presence of strong acids. Suitable solvents are linear, branched or cyclic aliphatic hydrocarbons, such as ligroin or cyclohexane, pentane, hexane, heptane, octane and aromatic solvents such as nitrotoluene. It is preferred to operate in substance or in ortho-nitrotoluene.
Suitable acids are strong Lewis or Bronsted acids, such as e.g. aluminium chloride, boron trifluoride, sulfuric acid, phosphoric acid, polyphosphoric acid, phosphorus pentoxide, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures of antimony pentafluoride and fluorosulfuric acid. Mixtures of the acids can also be used.
The acid is generally used in 0.1 to 100 mole equivalents, based on 4-(2-nitrophenyl)-butyronitrile. Preferably, 0.5 to 20 equivalents are used, particularly preferably 1 to 10 equivalents.
The reaction is generally carried out at temperatures of 0° C. to 200° C., preferably between 40° C. and 150° C., particularly preferably between 60° C. and 110° C.
The nitro imine and/or nitro enamine formed in step b), which is sensitive to hydrolysis, is preferably first converted to the nitroketone 5-nitro-3,4-dihydro-1(2H)-naphthalenone, e.g. by hydrolysis, and the nitroketone is isolated. The isolation takes place e.g. by phase separation.
The nitroketone is then converted back to the nitro imine and/or nitro enamine in step c) by reaction with ammonia, preferably in the presence of ammonium salts such as ammonium chloride, and then aromatised. The aromatisation then preferably takes place in ammonia as the solvent.
The aromatisation or dehydrogenation of the nitro enamine 5-nitro-3,4-dihydro-1-naphthylamine or of the nitro imine 5-nitro-3,4-dihydro-1(2H)-naphthylimine to 5-nitro-1-naphthylamine or 5-nitroso-1-naphthylamine or a mixture of the compounds is carried out, e.g. in an inert solvent, in the presence of a catalyst. In addition to the dehydrogenated product 5-nitro-1-naphthylamine, 5-nitroso-1-naphthylamine formally resulting from symproportionation can also be produced in the process. 1,5-Naphthalenediamine is also formed in traces. The products can be further processed in any mixing ratios. Suitable solvents are ammonia and linear, branched or cyclic aliphatic hydrocarbons such as ligroin or cyclohexane, and also acetonitrile and aromatic solvents such as benzene, toluene, xylene, nitrobenzene, nitrotoluene or chlorobenzene. The aromatisation can also be performed in the absence of a solvent.
Suitable catalysts are dehydrogenation catalysts, which are described in the literature (Römpp Lexikon Chemie; Georg Thieme Verlag, Stuttgart, 10
th
edition 1997, p. 891, chapter “Dehydrierung”, 1
st
section; Ullmann's Encyclopedia of Industrial

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the production of 1,5-naphthalenediamine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the production of 1,5-naphthalenediamine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the production of 1,5-naphthalenediamine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259398

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.