Process for the preparation of triethylenediamine (TEDA)

Organic compounds -- part of the class 532-570 series – Organic compounds – Nitrogen attached directly or indirectly to the purine ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06562971

ABSTRACT:

The present invention relates to a process for the preparation of triethylenediamine (TEDA) by reaction of ethylenediamine (EDA) in the presence of a zeolite catalyst.
Triethylenediamine (TEDA=DABCO®=1,4-diazabicyclo[2.2.2]octane) is an important basic chemical and is used, inter alia, in the preparation of pharmaceuticals and plastics, in particular as catalyst in the preparation of polyurethanes.
The known processes for the preparation of TEDA essentially differ through the nature of the starting materials and the catalysts. It is basically advantageous for the starting materials employed to be favorable basic chemicals, for example monoethanolamine (MEOA) or ethylenediamine (1,2-diaminoethane, EDA). However, conventional processes have proven to have very low selectivity, in particular with respect to the starting material EDA. In addition, the removal of the impurities which form during the cyclization reaction is difficult, and consequently these processes have not been able to establish themselves in industry.
The process described in U.S. Pat. No. 3,285,920 (H.G. Muhlbauer et al., Jefferson Chemical Co.) for the simultaneous preparation of TEDA and piperazine (referred to as PIP below) is a two-step process in which firstly EDA, ethanolamine and/or oligomers thereof are reacted in the presence of ammonia and hydrogen to give a mixture of piperazine and N-(beta-aminoethyl)piperazine in a reductive amination process using metal-oxide hydrogenation catalysts, and the remainder after removal of the piperazine is cyclized in the presence of cyclization catalysts, such as phosphate salts and aluminosilicates. The yields of TEDA are about 25% and those of PIP are about 12%.
U.S. Pat. No. 2,937,176 (Houdry Process Corp.) relates to the preparation of TEDA by gas-phase reaction of an alkylenepolyamine or alkanolamine in the presence of a solid acidic catalyst, such as silica-alumina, at temperatures of from 300 to 500° C. The TEDA is purified by crystallization from hydrocarbons, preferably pentane.
DE-A-24 34 913 (Shunan Petrochemicals) (equivalent: U.S. Pat. No. 3,956,329) describes the use of pentasil zeolites for the synthesis of TEDA from amines, such as N-aminoethylpiperazine,
PIP or EDA, by reaction on zeolites of types A, X and Y of the general formula a(M
2

O) (A1
2
O
3
) m(SiO
2
), where M=an alkali metal, alkaline-earth metal, an element from the zinc group, H
+
or NH
4
+
; n=valency of the cation; a=1.0+0.5; n=2−12. For conversion into the desired form, the zeolites are treated with an aqueous solution of hydrochloric acid for ion exchange with hydrogen cations or with metal halides for ion exchange with the desired metal cations.
EP-A-158 319 (Union Carbide Corp.) relates to the preparation of 1-azabicyclo[2.2.2]octane and 1,4-diazabicyclo[2.2.2]octanes from acyclic or heterocyclic amines in the presence of a ‘high-silica zeolite’ catalyst.
EP-A-313 753 (equivalent: DE-A1-37 35 212) and EP-A-312 734 (equivalent: DE-A1-37 35 214) (both Hüls AG) disclose a process for the preparation of a PIP/TEDA mixture by reaction of ethanolamines and/or ethylenediamine in the presence of a zeolite of the pentasil type. In accordance with the process, the reaction mixture is passed in gaseous form over a fixed-bed catalyst at from 280 to 380° C., and LHSV (liquid hourly space velocity) of from 0.1 to 10h
−1
and at an absolute pressure of from 0.1 to 10 bar. It is also proposed that the starting compounds be employed together with a diluent, for example water. Maximum TEDA selectivities of 46% are achieved.
According to EP-A-382 055 (equivalent: DE-A-39 03 622, BASF AG), 1,2-diaminoethane (EDA) and from 0 to 200 mol % of piperazine are converted into TEDA on aluminum, boron, gallium and/or iron silicate zeolites under the following preferred reaction conditions, in the case of a liquid-phase reaction: reaction temperature from 100 to 300° C., pressure from 1 to 5 bar and WHSV from 1 to 10h
−1
. The reaction is preferably carried out in the gas phase at a reaction temperature of from 200 to 400° C., a pressure of from 0.5 to 5 bar and an WHSV of from 1 to 10h
−1
. A solvent or diluent, such as water, may be added. In the preferred gas-phase procedure, yields of TEDA of up to 70% are obtained. As a particular preparation procedures, treatment with aqueous hydrochloric acid after the shaping of the zeolites, and subsequent calcination at from 400 to 500° C. is described.
EP-A-423 526 (equivalent: DE-A-39 34 459, Bayer AG) describes a process for the preparation of TEDA and PIP by reaction of EDA on zeolites of the pentasil type with reduced acidity. According to the this application, zeolites of this type are obtainable by exchange of at least 50% of all exchangeable cations by alkali metal cations or are those in which the aluminum of the zeolite structure is replaced isomorphically by iron. According to this application, ZSM-5 catalysts which have not been treated by this process have proven to be less suitable. The reaction is carried out at a temperature of from 300 to 400° C. and at a weight hourly space velocity of from 0.03 to 2.0 kg (EDA)/kg (zeolite)/h, using EDA/water mixtures comprising from 2 to 25 mol, preferably from 5 to 15 mol, of water per mole of EDA. Selectivities with respect to TEDA of up to 65% are achieved.
U.S. Pat. No. 4,966,969 (Idemitsu Kosan) describes a method for the preparation of TEDA from amine-containing compounds, for example monoethanolamine, ethylenediamine, piperazine or piperazine derivatives, on metal silicates of the pentasil type which have SiO
2
/Al
2
O
3
ratios of greater than 12 and which have been calcined at 400-600° C. under air, at reaction temperatures of 100-500° C. and pressures from 3 bar.
U.S. Pat. No. 5,041,548 (Idemitsu Kosan Ltd) proposes, inter alia, using pentasil zeolites (SiO
2
/M
2 O
3
: for example H-ZSM5, SiO
2
/Al
2
O
3=
45-90) prepared in the presence of organic templates, such as tetraalkylammonium compounds, in the reaction of amine-containing compounds, for example monoethanolamine, ethylenediamine or piperazine, for the preparation of TEDA. In the reaction of EDA/water mixtures at 400° C., TEDA yields of 45% are achieved. Pentasil zeolites prepared without an organic template exhibit significantly worse TEDA yields in the reactions of the amine-containing compounds at 350-400° C.
EP-A-831 096, EP-A-842 936 and EP-A-952 152 (Air Products and Chemicals Inc.) describe processes for the preparation of TEDA from EDA or monoethanolamine using specially modified pentasil zeolites:
According to EP-A-831 096 (equivalent: U.S. Pat. No. 5,731,449), caustic lye treatment of a pentasil zeolite (Na-ZSM5, SiO
2
/Al
2
O
3=
160) which has subsequently been converted into the H
+
form by means of NH
4
NO
3
solution and calcination (H-ZSM5, SiO
2
/Al
2 O
3=
153) enables an increase in the selectivity with respect to TEDA from 23% to 56% and in the long-term stability to 32 hours to be achieved without visible deactivation in the reaction of an EDA/water mixture at 340° C. compared with untreated zeolites. The effect is explained by passivation of the active centers (hydroxyl groups, analysis by IR spectroscopy) on the external, outer surface of the zeolite as a consequence of the caustic-lye treatments.
According to EP-A-842 936 (equivalent: U.S. Pat. No. 5,741,906), pretreatment with a dealuminating agent (chelating agent for removal of aluminum, for example oxalic acid) likewise enables the external, outer surface of pentasil zeolites (H-ZSM5, SiO
2
/Al
2
O
3=
180) to be passivated and thus, for example, improved selectivity to be achieved in the synthesis of TEDA from monoethanolamine, piperazine and water at 350° C. of up to 30% compared with untreated zeolites.
According to EP-A-952 152 (equivalent: U.S. Pat. No. 6,084,096), surface passivation of the pentasil zeolites can likewise be achieved by treatment with a silicon compound followed by calcination. The treatment of a very fi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of triethylenediamine (TEDA) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of triethylenediamine (TEDA), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of triethylenediamine (TEDA) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.