Process for the preparation of quinolylpropenal

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S152000, C546S176000, C546S180000

Reexamination Certificate

active

06630591

ABSTRACT:

TECNICAL FIELD
The present invention relates to a process for preparing a quinolylpropenal derivative from a quinolyl-acrylonitrile derivative. The quinolylpropenal derivative prepared by the method of the invention is utilizable as an intermediate compound for the synthesis of a cholesterol reducing agent (HMG-CoA reductase inhibitor).
BACKGROUND ART
Until now, it has been known that the quinolylpropenal derivative is prepared by the two step process comprising a step of reducing a quinoline acrylate by diisobutylaluminum hydride to give quinolylpropenol and a subsequent step of oxidizing the quinolylpropenol by the use of a combination of oxalyl chloride and dimethylsulf-oxide, or manganese dioxide (J. Med. Chem., 34, 367 (1991)).
Further known is a method of selectively reducing the cyano group to a formyl group by the use of a diisobutylaluminum hydride reducing agent, keeping the double bond of an acrylonitrile compound to produce a propenal compound (Heterocycles, 29, 691(1989)).
Both of the above-mentioned process and method are disadvantageous from the viewpoint of industrial preparation because these process and method utilize diisobutylaluminum hydride or manganese dioxide which requires careful handling procedures and complicated post-treatment.
DISCLOSURE OF THE INVENTION
The present invention resides in a method for preparing 3-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]-prop-2-enal by reducing 3-[2-cyclopropyl-4-(4-fluoro-phenyl)-3-quinolyl]prop-2-enenitrile using Raney-nickel in the presence of formic acid and water in an amount of 0.25 to 1 volume part per one volume part of the formic acid, or in the presence of an amine salt of formic acid and an organic acid.
The starting compound of the reaction of the invention, that is, 3-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]prop-2-enenitrile [hereinafter referred to as quinolylacrylonitrile derivative] and the desired compound, that is, 3-[2-cyclopropyl-4-(4-fluorophenyl)-3-quinolyl]prop-2-enal [hereinafter referred to as quinol-ylpropenal derivative] are the compounds represented, respectively, by the following formulas (1) and (2):
DETAILED DESCRIPTION OF THE INVENTION
The quinolylacrylonitrile derivative of the formula (1) which is the starting material of the reaction of the invention is new and can be prepared by reacting a known 2-cyclopropyl-4-(4-fluorophenyl)quinoline-3-carbaldehyde (which is described in JP-A-279866, EP-A-304063, and USP 5,011,930) with diethyl cyanomethylphosphonate, preferably in such as solvent as an aromatic hydrocarbon in the presence of a base such as sodium hydroxide.
The Raney-nickel which is employed in the reductive reaction of the invention is an alloy comprising nickel and aluminum as principle ingredients. The nickel content preferably is in the range of 10 to 90 wt. %, more preferably 40 to 80 wt. %. Generally, an activated Raney-nickel is employed. However, Raney-nickels which are pre-treated or stabilized by various methods can be also employed. The Raney-nickel can further comprise other metals such as cobalt, iron, lead, chromium, titan, molybdenum, vanadium, manganese, tin, and tungsten.
In the reducing reaction of the invention, the Raney-nickel is employed in an amount of preferably 0.30 to 2 weight parts in terms of weight of nickel atom, more preferably 0.30 to 1.2 weight parts, per one weight part of the starting compound (i.e., quinolylacrylonitrile derivative).
In one embodiment of the reducing reaction using Raney-nickel can be performed in the presence of formic acid and water in an amount of 0.25 to 1 volume part per one volume part of the formic acid.
According to the study of the present inventors, it has been confirmed that the desired quinolylpropenal derivative of the aforementioned formula (2) can be obtained in a high yield and under easily controllable reaction conditions if the water is used in an amount of the above-mentioned range.
The formic acid is employed in an amount of preferably 0.25 to 50 weight parts, more preferably 1 to 40 weight parts, per one weight part of the quinolylacrylonitrile (starting compound).
When the reducing reaction is carried out, solvents other than formic acid and water can be present in the reaction mixture. There are no specific limitations with respect to the solvents, provided that the solvents do not disturb the reaction. Examples of the solvents include amides such as N,N-dimethylformamide; alcohols such as methanol, ethanol, isopropyl alcohol, and t-butyl alcohol; ketones such as acetone and methyl ethyl ketone; aliphatic hydrocarbons such as pentane and cyclohexane; and aromatic hydrocarbons such as toluene and xylene.
If the above-mentioned solvent is employed in the reducing reaction, the solvent is employed in an amount of generally, not more than 60 weight parts, particularly not more than 10 weight parts, per one weight part of the quinolylacrylonitrile derivative (starting compound). The solvents can be employed singly or in combination.
The reducing reaction can be performed by causing formic acid and water into contact with the quinolylacrylonitrile derivative in a liquid phase in the presence of Raney-nickel. For instance, the reaction can be carried out by heating and stirring a mixture of the Raney-nickel, quinolylacrylonitrile derivative, formic acid and water at an atmospheric pressure or increased pressure under inert gas atmosphere. The reaction is performed at a temperature of preferably 20 to 110° C., more preferably 30 to 80° C. The reaction can be controlled, if desired, by addition of an inorganic base, an organic base, or a platinum salt to the reaction mixture, as described on pages 123-147 of “Raney Catalysts”, Teruo Kubomatu and Shinichiro Komatsu, published by Kawaken Fine Chemicals Co., Ltd.
The reaction product (target product) of the reaction of the invention, that is, the quinolylpropenal derivative of the formula (2) can be isolated and purified after the reaction and subsequent filtration and extraction are complete, by a conventional procedure such as distillation, recrystallization, or column chromatography.
Another embodiment of the reducing reaction using Raney-nickel according to the present invention can be performed in the presence of an amine salt of formic acid and an organic acid.
The amine salt of formic acid is a salt formed of formic acid and an amine. Examples include ammonium formate; salts of formic acid with a primary amine such as monomethylammonium formate and monoethylammonium formate; salts of formic acid with a secondary amine such as dimethylarnonium formate and diethylammonium formate; and salts of formic acid with a tertiary amine such as trimethylammonium formate and triethylammonium formate. Preferred are ammonium formate and triethylammonium formate. More preferred is ammonium formate. The amine salt of formic acid is employed in an amount of preferably 1.0 to 5.0 moles, more preferably 1.5 to 3.0 moles, per one mole of the quinolylacrylonitrile derivative (starting compound).
The organic acid preferably is a lower aliphatic acid having 2 to 5 carbon atoms. Examples are acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid and pivalic acid. Preferred is acetic acid. The organic acid is employed in an amount of preferably 3 to 50 weight parts, more preferably 5 to 30 weight parts, per one weight part of the quinolylacrylonitrile derivative (starting compound). The organic acids can be employed singly or in combination.
The reducing reaction can be preferably performed by causing the quinolylacrylonitrile derivative of the formula (1) into contact with the amine salt of formic acid in an organic acid in the presence of Raney-nickel. For instance, the reaction can be carried out by heating and stirring a mixture of the Raney-nickel, quinolylacrylonitrile derivative, ammonium formate and an organic acid at an atmospheric pressure or increased pressure under inert gas atmosphere. The reaction is performed at a temperature of preferably 20 to 110° C., more pref

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of quinolylpropenal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of quinolylpropenal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of quinolylpropenal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.