Process for the preparation of polyalkylphenoxyaminoalkanes

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S353000, C564S354000

Reexamination Certificate

active

06649800

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improved process for the preparation of polyalkylphenoxyaminoalkanes. More particularly, this invention relates to a process for the preparation of polyalkylphenoxyaminoalkanes which comprises the aminoethylation of a polyalkylphenol compound with 2-oxazolidinone or a derivative thereof in the presence of an alcohol.
BACKGROUND OF THE INVENTION
Polyalkylphenoxyaminoalkanes are known fuel additives useful in the prevention and control of engine deposits. U.S. Pat. Nos. 5,669,939 and 5,851,242 describes a process for preparing these compounds. The process involves initially hydroxylating a polyalkylphenol with an alkylene carbonate in the presence of a catalytic amount of an alkali metal hydride or hydroxide, or alkali metal salt, to provide a polyalkylphenoxyalkanol which is subsequently reacted with an appropriate amine to provide the desired polyalkylphenoxyaminoalkane.
2-oxazolidinones or derivatives thereof are well described. For example, Martin E. Dyen and Daniel Swern,
Chemistry Reviews
(1967), pages 197-246 describes 2-oxazolidinones in detail. The use of 2-oxazolidinones or derivatives thereof in the aminoethylation of phenols is well known in the art.
U.S. Pat. No. 4,381,401 discloses the reaction of 2-oxazolidinone or N-substituted derivatives thereof with aromatic amine hydrochlorides at elevated temperatures to produce 1,2-ethanediamines. The 1,2-ethanediamines produced are an important class of materials which are useful as intermediates for the production of pharmaceuticals, photographic chemicals and other compositions.
Japanese Patent Publication No. JP 2592732 B2 discloses a method of producing phenoxyethylamines by reacting, under base conditions, low molecular weight phenols and 2-oxazolidinone. Phenoxyethylamines are important raw materials for pharmaceuticals and pesticides.
German Patent Publication DE 19711004 A1 discloses the use of 2-oxazolidinone to prepare phenoxyaminoalkanes from low molecular weight phenols. 24-(Phenoxyphenoxy)ethylamine and ethyl 2-(phenoxyphenoxy)ethylcarbamate are sequentially prepared in high yield and selectivity by the aminoethylation of 4-phenoxyphenol with 2-oxazolidinone under inert atomsphere, followed by amidation of 2-4-(phenoxyphenoxy)ethylamine with carbonate derivatives.
U.S. Pat. No. 6,384,280 teaches the use of 2-oxazolidinone or a derivative thereof in aminoethylation transformations involving high molecular weight polyalkylphenols to provide polyalkylphenoxyaminoalkanes of the type disclosed in U.S. Pat. Nos. 5,669,939 and 5,851,242.
Commonly assigned copending U.S. patent application Ser. No. 10/185,469, filed Jun. 28, 2002, a process for the preparation of polyalkylphenoxyaminoalkanes comprising the aminoethylation of a polyalkylphenol compound with &bgr;-amino alcohol and dialkyl carbonate, which process may contain an optional alcohol.
SUMMARY OF THE INVENTION
The present invention provides an improved process for the preparation of polyalkylphenoxyaminoalkanes which comprises the aminoethylation of a polyalkylphenol compound in the presence of a basic catalyst with 2-oxazolidinone or a derivative thereof having the following formula:
wherein R
1
and R
2
are independently hydrogen or lower alkyl having 1 to about 6 carbon atoms and wherein the polyalkyl group of the polyalkylphenol has an average molecular weight in the range of about 600 to 5,000 and wherein the process is carried out in the presence of an alcohol.
The alcohol has the structure R
3
—OH wherein R
3
is an alkyl group having about 3 to 7 carbon atoms. The molar ratio of the alcohol to the polyalkylphenol compound is normally in the range of about 0.2:1 to 5:1.
The aminoethylation reaction of the present invention readily occurs using a basic catalyst selected from the group consisting of alkali metal lower alkoxides, alkali hydrides or alkali metal hydroxides in the temperature range of about 100° C. to 250° C., wherein the molar ratio of 2-oxazolidinone or a derivative thereof to polyalkylphenol compound is about 5:1 to 0.9:1 and wherein the number of equivalents of basic catalyst per equivalent of polyalkylphenol is about 0.05:1 to 1:1.
Among other things, the present invention relates to an improved process for the preparation of polyalkylphenoxyaminoalkanes in the presence of an alcohol that provides increased polyisobutylphenol conversion and reduced thermal degradation of 2-oxazolidinone in the process. Moreover, the use of an alcohol was found to mitigate the negative effect of sediment in unfiltered polyisobutylphenol (still contains salts from the neutralized alkylation catalyst) on product color. The use of polyisobutylphenol containing alkylation catalyst sediment is preferred over filtered or washed polyisobutylphenol due to process economics.
DETAILED DESCRIPTION OF THE INVENTION
As noted above, the present invention provides an improved process for the preparation of polyalkylphenoxyaminoalkanes which comprises an aminoethylation of a polyalkylphenol compound in the presence of a basic catalyst with 2-oxazolidinone or a derivative thereof having the following formula:
wherein R
1
and R
2
are independently hydrogen or lower alkyl having 1 to about 6 carbon atoms and wherein the polyalkyl group of the polyalkylphenol has an average molecular weight in the range of about 600 to 5,000 and wherein the process is carried out in the presence of an alcohol.
The reaction may be illustrated by the following:
wherein R is a polyalkyl group having a molecular weight in the range of about 600 to 5,000, and R
1
, R
2
and R
3
are as herein described.
Definitions
Prior to discussing the present invention in detail, the following terms will have the following meanings unless expressly stated to the contrary.
The term “alkyl” refers to both straight- and branched-chain alkyl groups.
The term “lower alkyl” refers to alkyl groups having 1 to about 6 carbon atoms and includes primary, secondary and tertiary alkyl groups. Typical lower alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl and the like.
The term “polyalkyl” refers to an alkyl group which is generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene, butylene, and the like. Preferably, the mono-olefin employed will have about 2 to 24 carbon atoms, and more preferably, about 3 to 12 carbon atoms. More preferred mono-olefins include propylene, butylene, particularly isobutylene, 1-octene and 1-decene. Polyolefins prepared from such mono-olefins include polypropylene, polybutene, especially polyisobutene, and the polyalphaolefins produced from 1-octene and 1-decene.
Polyalkylphenoxyaminoalkanes may be prepared by the process of the present invention which comprises an aminoethylation of a polyalkylphenol compound with 2-oxazolidinone or a derivative thereof having the following formula:
wherein R
1
and R
2
are defined herein, in the presence of a catalytic amount of an alkali metal lower alkoxide, alkali hydride or alkali metal hydroxide.
Polyalkylphenols are well known materials and are typically prepared by the alkylation of phenol with the desired polyolefin or chlorinated polyolefin. A further discussion of polyalkylphenols can be found, for example, in U.S. Pat. Nos. 4,744,921 and 5,300,701.
Accordingly, polyalkylphenols may be prepared from the corresponding olefins by conventional procedures. For example, polyalkylphenols may be prepared by reacting the appropriate olefin or olefin mixture with phenol in the presence of an alkylating catalyst at a temperature of from about 25° C. to 150° C., and preferably about 30° C. to 100° C. either neat or in an essentially inert solvent at atmospheric pressure. A preferred alkylating catalyst is boron trifluoride. Molar ratios of reactants may be used. Alternatively, molar excesses of phenol can be employed, i.e., about 2 to 3 equivalents of phenol for each equivalent of olefin with unreacted phenol recycled. The latter proces

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of polyalkylphenoxyaminoalkanes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of polyalkylphenoxyaminoalkanes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of polyalkylphenoxyaminoalkanes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3148745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.