Process for the preparation of perfluoroalkanones

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S364000, C568S404000, C568S407000

Reexamination Certificate

active

06689917

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a process for producing linear or cyclic perfluoroalkanones.
BACKGROUND ART
Perfluoroalkanones are compounds useful as intermediates of fluorine-containing compounds or as dry etching gases. The following methods are known for producing linear or cyclic perfluoroalkanones.
(1) A method for synthesizing octafluorocyclopentanone that comprises subjecting perfluoro-(methylenecyclopentene) to photochlorination, and then to oxidation using potassium permanganate (Camaggi, G. et al., J. Chem. Soc. C, 925-936 (1971)).
(2) A method that comprises treating a starting material such as perfluoromethylenecycloalkene epoxide and perfluoropropylene epoxide with an acid or the like (alumina, cesium fluoride, a Lewis acid and the like) (U.S. Pat. No. 3,321,515).
(3) A method that comprises subjecting cyclopentanone, methylethylketone or the like to direct fluorination (Fred F. Holub et al., J. Amer. Chem. Soc., 72 4879-4884 (1950)).
(4) A method that comprises subjecting methoxycycloalkanone to direct fluorination and treating the resulting compound with sulfuric acid (Adcock, James L. et al., J. Org. Chem., 49(1), 191-193 (1984)).
(5) A method that comprises subjecting ethyl octafluoroheptanedioate, ethyl octafluorooctanedioate, methyl tridecafluoroheptanoate or the like to Dieckmann condensation to synthesize a diol, and then subjecting the diol to a dehydration reaction using phosphorus pentoxide (Alekseenko, A. N. et al., Ukr. Khim. Zh. (Russ. Ed.), 54 (1), 66-71 (1988)).
(6) A method for synthesizing a perfluoroalkanone that comprises promoting a decarboxylation reaction between a metal salt of perfluoroalkanoic acid and a perfluoroalkanoic anhydride (Michael. Van. Der. Puy et al., U.S. Pat. No. 5,998,671).
These conventional methods, however, have problems, such as a low yield of the desired perfluoroalkanones and difficulty in obtaining starting materials.
DISCLOSURE OF THE INVENTION
A principal object of the present invention is to provide a process for synthesizing perfluoroalkanones with a high yield using relatively easily available starting materials by a simple synthesis method.
The inventors of the present invention conducted extensive research to attain the above-mentioned object. As a result, they found that when using as a starting material a combination of the same or different kinds of compounds that are selected from perfluoroalkanoyl halides represented by a specific formula, and reacting the starting material with a metal carbonate, an intermolecular reaction occurs between the starting perfluoroalkanoyl halide and a carbanion produced by decarboxylation of the acid halide, thereby synthesizing a linear perfluoroalkanone with a high yield. Moreover, the inventors found that when a starting material of a perfluoroalkanedioyl dihalide represented by a specific formula is reacted with a metal carbonate, a similar reaction to the above-mentioned reaction occurs intramolecularly, thereby synthesizing a perfluorocycloalkanone with a high yield. This invention is completed based on these findings.
Specifically, the present invention provides the following processes for producing a linear perfluoroalkanone and for producing a perfluorocycloalkanone.
1. A process for producing a linear perfluoroalkanone comprising:
reacting a starting material with a metal carbonate or metal carbonates to perform an intermolecular reaction of the starting material,
the starting material being a combination of the same or different kinds of compounds that are selected from perfluoroalkanoyl halides represented by the formula: F(CF
2
)
n
COX wherein X is F, Cl, Br or I and n is an integer of 1 to 8.
2. The process for producing a linear perfluoroalkanone according to Item 1 above, wherein the perfluoroalkanoyl halides are compounds selected from perfluoroalkanoyl chlorides and perfluoroalkanoyl fluorides.
3. A process for producing a perfluorocycloalkanone comprising:
reacting a metal carbonate or metal carbonates with a perfluoroalkanedioyl dihalide represented by the formula: XOC(CF
2
)
n
COX wherein X is F, Cl, Br or I and n is an integer of 3 to 8 to perform an intramolecular reaction of the perfluoroalkanedioyl dihalide.
4. The process for producing a perfluorocycloalkanone according to Item 3 above, wherein at least one compound selected from perfluoroalkanedioyl dichlorides and perfluoroalkanedioyl difluorides is used as the perfluoroalkanedioyl dihalide.
5. The process for producing a linear perfluoroalkanone according to Item 1 or 2 above, wherein the reaction is carried out in an aprotic solvent.
6. The process for producing a perfluorocycloalkanone according to Item 3 or 4, wherein the reaction is carried out in an aprotic solvent.
In the process for producing a linear perfluoroalkanone of the present invention, as a starting material, a combination of the same or different kinds of compounds is used that are selected from perfluoroalkanoyl halides represented by the formula: F(CF
2
)
n
COX wherein X is F, Cl, Br or I and n is an integer of 1 to 8. Examples of such perfluoroalkanoyl halides include perfluoroalkanoyl chlorides, perfluoroalkanoyl fluorides, perfluoroalkanoyl bromides and the like. Among the above examples, from the standpoint of easy availability, perfluoroalkanoyl chlorides, perfluoroalkanoyl fluorides and the like are preferable. When using different kinds of compounds selected from the above-mentioned perfluoroalkanoyl halides, two or more kinds of compounds can be used.
In the process for producing a perfluorocycloalkanone of the present invention, a perfluoroalkanedioyl dihalide is used as a starting material, which is represented by the formula: XOC(CF
2
)
n
COX wherein X is F, Cl, Br or I and n is an integer of 3 to 8. Examples of such perfluoroalkanedioyl dihalides include perfluoroalkanedioyl dichlorides, perfluoroalkanedioyl difluorides, perfluoroalkanedioyl dibromides and the like. Among the above examples, from the standpoint of easy availability, perfluoroalkanedioyl dichlorides, perfluoroalkanedioyl difluorides and the like are particularly preferable. The perfluoroalkanedioyl dihalides can be used alone, or two or more of them can be used.
Among the above-mentioned starting materials, perfluoroalkanoyl fluoride and perfluoroalkanedioyl difluoride are easily obtainable by reacting fuming sulfuric acid with iodide compound (F(CF
2
)
n+1
I) and diiodide compound (IF
2
C(CF
2
)
n
CF
2
I), respectively. Also, perfluoroalkanoyl chloride and perfluoroalkanedioyl dichloride are easily obtainable by reacting thionyl chloride, phosphorus oxychloride, phosphorus pentachloride or the like with the corresponding perfluoroalkanoic acid and perfluoroalkanedioic acid, respectively.
The metal carbonates for use in the present invention include sodium carbonate, potassium carbonate, calcium carbonate, lithium carbonate, strontium carbonate, barium carbonate, aluminum carbonate, and so forth. Among them, sodium carbonate, potassium carbonate and the like are particularly preferable. These metal carbonates can be used alone, or two or more of them can be used in combination.
In the process for producing a linear perfluoroalkanone of the present invention, a combination of the same or different kinds of compounds that are selected from perfluoroalkanoyl halides represented by the above formula is used as a starting material, and a metal carbonate is reacted with the starting material to produce the linear perfluoroalkanone by a decarboxylation reaction. Also the process for producing a perfluorocycloalkanone employs a decarboxylation reaction caused by reacting a metal carbonate with a perfluoroalkanedioyl dihalide represented by the above formula.
In the process for producing a linear perfluoroalkanone and the process for producing a perfluorocycloalkanone of the present invention, in the case of using the metal carbonate of monovalent metal, the amount of the metal carbonate is preferably about 1 to 5 moles and more preferably about 1.5 to 3 moles, per 1 mole of the starting material, i.e., perfluoroalkanoyl halide or perf

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of perfluoroalkanones does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of perfluoroalkanones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of perfluoroalkanones will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3293392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.