Plastic and nonmetallic article shaping or treating: processes – Carbonizing to form article – Filaments
Reexamination Certificate
2006-06-06
2006-06-06
Silverman, Stanley S. (Department: 1754)
Plastic and nonmetallic article shaping or treating: processes
Carbonizing to form article
Filaments
C423S447100, C521S061000, C521S062000, C521S063000, C521S077000, C521S918000, C521S919000, C502S527240
Reexamination Certificate
active
07056455
ABSTRACT:
The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined. When the precursor morphology is selected to comprise cylindrical domains this procedure additionally allows for the direct formation of two dimensional nanowire grids or arrays of oriented nanostructures on surfaces. When these nanowire grids or arrays are perpendicularly oriented to the surface applications include field emitters, high surface area electrodes, electronic devices such as diodes and transistors, tools for AMF tips and elements of molecular electronics. When the first nanostructured morphology is selected to form cylinders parallel to the surface then nanowire arrays are formed after pyrolysis. When the composition of the first nanostructured morphology is selected to comprise a continuous precursor matrix then a continuous carbon based nanostructured material is formed. The internal structure of the carbon based material can be selected to comprise perpendicular pores or an interconnected array of pores. The carbon based structures can additionally find application in photovoltaics, supercapacitors, batteries, fuel cells, computer memory, carbon electrodes, carbon foams, actuators and hydrogen storage.
REFERENCES:
patent: 3183217 (1965-05-01), Serniuk et al.
patent: 3959225 (1976-05-01), Kuntz
patent: 4007165 (1977-02-01), MacLeay et al.
patent: 4073870 (1978-02-01), Saji et al.
patent: 4374751 (1983-02-01), Dudgeon
patent: 4728706 (1988-03-01), Farnham et al.
patent: 4940648 (1990-07-01), Geiger
patent: 4954416 (1990-09-01), Wright et al.
patent: 5089135 (1992-02-01), Yoneyama et al.
patent: 5169914 (1992-12-01), Kaszas et al.
patent: 5312871 (1994-05-01), Mardare et al.
patent: 5405913 (1995-04-01), Harwood et al.
patent: 5451647 (1995-09-01), Faust et al.
patent: 5470928 (1995-11-01), Harwood et al.
patent: 5510212 (1996-04-01), Delnick et al.
patent: 5510307 (1996-04-01), Narayanan et al.
patent: 5558954 (1996-09-01), Morrison
patent: 5668188 (1997-09-01), Whinnery et al.
patent: 5763548 (1998-06-01), Matyjaszewski et al.
patent: 5789487 (1998-08-01), Matyjaszewski et al.
patent: 5807937 (1998-09-01), Matyjaszewski et al.
patent: 5910549 (1999-06-01), Matyjaszewski et al.
patent: 5945491 (1999-08-01), Matyjaszewski et al.
patent: 6054507 (2000-04-01), Funaki et al.
patent: 6111022 (2000-08-01), Matyjaszewski et al.
patent: 6121371 (2000-09-01), Matyjaszewski et al.
patent: 6124411 (2000-09-01), Matyjaszewski et al.
patent: 6162882 (2000-12-01), Matyjaszewski et al.
patent: 6288186 (2001-09-01), Matyjaszewski et al.
patent: 6407187 (2002-06-01), Matyjaszewski et al.
patent: 6512060 (2003-01-01), Matyjaszewski et al.
patent: 6538091 (2003-03-01), Matyjaszewski et al.
patent: 6541580 (2003-04-01), Matyjaszewski et al.
patent: 6565763 (2003-05-01), Asakawa et al.
patent: 6592991 (2003-07-01), Wiesner et al.
patent: 6624262 (2003-09-01), Matyjaszewski et al.
patent: 6624263 (2003-09-01), Matyjaszewski et al.
patent: 6627314 (2003-09-01), Matyjaszewski et al.
patent: 0 576 198 (1993-12-01), None
patent: 0870809 (1998-10-01), None
patent: WO 98/01480 (1998-01-01), None
patent: WO 00/56795 (2000-09-01), None
U.S. Appl. No. 10/269,556 filed Oct. 11, 2002.
U.S. Appl. No. 09/359,359 filed Jul. 23, 1999.
U.S. Appl. No. 09/534,827 filed Mar. 23, 2000.
U.S. Appl. No. 09/972,056 filed Oct. 5, 2001.
U.S. Appl. No. 10/034,908 filed Dec. 21, 2001.
U.S. Appl. No. 10/271,025 filed Oct. 15, 2002.
U.S. Appl. No. 10/289,545 filed Nov. 7, 2002.
Dorota Greszta et al., “Gradient Copolymers of Styrene and Acrylonitrille Via Atom Transfer Radical Polymerization”, Polymer Preprints, Apr. 1997, pp. 709-710, vol 38 (1).
Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664-7671.
Jin-Shan Wang and Krzysztof Matyjaszewski, “Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes”. Reprinted form the Journal of the American Chemical Society, 1995, vol. 117, No. 20.
Jin-Shan Wang and Krzysztof Matyjaszewski, “Controlled/”Living“Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process”. Reprinted from Macromolecules, 1995, 28. Department of Chemistry, Carnegie Mellon University. Received May 2, 1995; Revised Manuscript Received Aug. 14, 1995.
Krzysztof Matyjaszewski, Mingli Wei, Jianhui Xia and Nancy E. McDermott, “Controlled/“Living ”Radical Polymerization of Styrene and Methly Methacrylate Catalyzed by Iron Complexesl”, Macromolecules, vol. 30, No. 26, 1997.
Krzysztof Matyjaszewski, Simion Coca, Scott G. Gaynor, Mingli Wei and Brian E. Woodworth, “Zerovalent Metals in Controlled/”Living“Radical Polymerization”, Macromolecules, 1997, pp. 7348-7350, vol. 30, No. 23.
Matyjaszewski, K.; Editor Controlled/Living Radical Polymerization. Progress in ATRP, NMP, and RAFT. In: ACS Symp. Ser., 2000; 768, 2000., Chapter 19 “Reverse Atom Transfer Radical Polymerization Using AIBN or BPO as Initiator” pp. 263-275.
Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921-2990.
Mingli Wei, Jianhui Xia, Nancy E. McDermott and Krzysztof Matyjaszewski, “Atom Transfer Radical Polymerization of Styrene in the Presence of Iron Complexes”, Polymer Preprints, 38(2), 231 (1997), Department of Chemistry, Carnegie Mellon University.
Qui, J.; Matyjaszewski, K; Thouin, L.; Amatore, C. Macromol. Chem. Phys. 2000, 201, 1625-1631.
Queffelec, J.; Gaynor, S.G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629-8639.
Simion Coca, Christina B. Jasieczek, Kathryn L. Beers and Krzysztof Matyjaszewski, “Polymerization of Acrylates by Atom Transfer Radical Polymerization. Homopolymerization of 2-Hydroxyethyl Acrylate”, Journal of Polymer Science, 1998, pp. 1417-1424, vol. 36, Part A: Polymer Chemistry.
Seong Mu Jo et al, “Polyacrylonitrile with Low Polydispersities by Atom Transfer Radical Polymerization”, Polymer Preprints, vol. 38(1) Apr. 1997, pp. 697-698.
Seong Mu Jo et al, “Effects of Various Copper Salts and Additives on Polymerization of Acrylonitrile by Atom Transfer Radical Polymerization”, Polymer Preprints, vol. 38(1) Apr. 1997, pp. 699-700.
Timothy E. Patten and Krzysztof Matyjaszewski, Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials, Advanced Materials 1998 10 No. 12, 901-915.
T.E. Patten et al., “Polymers with very Low Polydispersities from Atom Transfer Radical Polymerization”, Science, vol. 272, pp. 866-868, May 10, 1996.
U. Schubert et al., “Design of Effective Systems for Controlled Radical Polymerization of Styrene: Application of 4,4′-Dimethyl and 5,5′-Dimethyl 2,2′-Bipyridine Copper(ii) Complexes”, Macromol. Rapid Commun., vol. 20, No. 6, pp. 351-355, 1999.
Wang et al., “Living/Controlled Radical Polymerization, Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator”, Macromolecules, 1995, vol. 28, pp. 7572-7573.
Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
Xia J. and Matyjaszewski K., “
Kowalewski Tomasz
Lambeth David N.
Matyjaszewski Krzysztof
Spanswick James
Tsarevsky Nicolay V.
Carnegie Mellon University
Kirkpatrick & Lockhart Nicholson & Graham LLP
Lish Peter J.
Silverman Stanley S.
LandOfFree
Process for the preparation of nanostructured materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the preparation of nanostructured materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of nanostructured materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3649728